
Instance-Based Opponent Action Prediction in
Soccer Simulation Using Boundary Graphs

Thomas Gabel and Fabian Sommer

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

60318 Frankfurt am Main, Germany
{tgabel|fsommer}@fb2.fra-uas.de

Abstract. The ability to correctly anticipate an opponent’s next action
in real-time adversarial environments depends on both, the amount of
collected observations of that agent’s behavior as well as on the capability
to incorporate new knowledge into the opponent model easily. We present
a novel approach to instance-based action prediction that utilizes graph-
based structures for the efficiency of retrieval, that scales logarithmically
with the amount of training data, and that can be used in an online and
anytime manner. We apply this algorithm to the use case of predicting
a dribbling agent’s next action in Soccer Simulation 2D.

1 Introduction

Opponent modeling and action prediction have a long history in robotic soccer.
The ability to anticipate what an opponent player is going to do in the next time
step and reacting with appropriate counter measures can bring about significant
advantages to one’s own agents. In this paper, we extend our previous work
[8] on predicting the low-level behavior of agents in Soccer Simulation 2D into
a direction that makes it scalable and practically applicable under the hard
real-time constraints that are imposed in this domain. Hitherto, we approached
the task of predicting an opponent’s next action in an instance-based manner
by explicitly storing all training instances in memory and then (e.g. during a
match) searching linearly for the nearest neighbor to the current situation and
using that neighbor’s class label as the predicted next opponent action.

Unfortunately, it is well-known that instance-based classification approaches,
when being applied in the described naive manner, scale poorly (usually linearly)
with the amount of training data. As a consequence, when intending to apply
these ideas in our soccer simulation competition team, we arrive at a set of
challenging requirements:

a) Instance-based: Instance-based learning is a lazy learning approach; new in-
stances shall, if necessary, be memorized easily.

b) Real-time capable: There are hard real-time constraints in robotic soccer.
Thus, when searching for the nearest neighbor from the set of stored instances,
hard time limits must be respected.



c) Incremental: The approach should be applicable online, which means that it
must be possible to incorporate new experience on the fly during the appli-
cation without the need to perform some computationally heavy relearning.

d) Anytime: Usually, the available computational budget varies from time to
time. Thus, it would be highly desirable to have an anytime prediction algo-
rithm whose accuracy improves with more computational power.

e) Simplicity: The desired prediction algorithm shall be simple to implement
and have no dependency on certain libraries or mighty learning frameworks
such that it can be utilized easily on any (competition) machine.

Needless to say that any prediction algorithm with linear time requirements
in the number n of training examples is ruled out as it would perform too poorly
and not scale for larger dataset sizes. Hence, for an instance-based prediction
algorithm ideally logarithmic complexity is desired or at least a dependency on
n according to some power law with a power value significantly below one.

Our contribution in this paper is twofold. On the one hand, we propose
a novel instance-based classification approach that fulfills the mentioned five
requirements. At the heart of this approach is the construction of an index
structure to efficiently guide the search for most similar instances that we call
a Boundary Graph. We build up the graph structure from training data, which
means that its topology is not fixed a priori. It is also worth noting that the
construction process can be applied in an online setting, i.e. no batch access to
the full dataset of instances is needed and, hence, the graph index structure can
be extended as more and more training examples come in. Both, the build-up
as well as the employment of that graph-based index structure are inherently
stochastic – a fact that we found to substantially improve the robustness of the
approach as well as to reduce its dependency on other factors like the order of
presentation of instances during learning.

On the other hand, we empirically evaluate the performance of the delineated
approach for the use case of predicting a dribbling opponent agent’s next action
in soccer simulation. Knowing the opponent’s next action with high certainty
before it is executed by the opponent may enable our agents to simultaneously
compute the best possible answer to that future action and, hence, improve our
team’s playing strength.

We start by providing background knowledge and reviewing related work
in Section 2. While Section 3 presents the mentioned boundary graph-based
approach in full detail, in Section 4 we return to robotic soccer simulation,
explain how to utilize the proposed approach for the dribble action use case and
present corresponding empirical findings.

2 Background and Related Work

In the following, we outline the basics that are needed to understand our ap-
proach as well as the application use case it is intended for and discuss relevant
related work.



2.1 Robotic Soccer Simulation

In RoboCup’s 2D Simulation League, two teams of simulated soccer-playing
agents compete against one another using the Soccer Server [12] as real-time
soccer simulation system. The Soccer Server allows autonomous software agents
to play soccer in a client/server-based style: It simulates the playing field, com-
munication, the environment and its dynamics, while the player clients connect
to the server and send their intended actions (e.g. a parameterized kick or dash
command) once per simulation cycle to the server. The server takes all agents’ ac-
tions into account, computes the subsequent world state and provides all agents
with information about their environment.

So, decision making must be performed in real-time or, more precisely, in dis-
crete time steps: Every 100ms the agents can execute a low-level action and the
world-state will change based on the individual actions of all players. Speaking
about low-level actions, we stress that these actions themselves are “parameter-
ized basic actions” and the agent can execute only one of them per time step:

– dash(x, α) – lets the agent accelerate by relative power x ∈ [0, 100] into
direction α ∈ (−180, 180] relative to its body orientation

– turn(α) – turn the body by α ∈ (−180, 180] where, however, the Soccer
Server reduces α depending on the player’s current velocity (inertia moment)

– kick(x, α) – kick of the ball (only, if the ball is within the player’s kick range)
by relative power x ∈ [0, 100] into direction α ∈ (−180, 180]

– There exist a few further actions (like tackling, playing foul, or, for the goal
keeper, catching the ball) whose exact description is beyond scope.

It is clear that these basic actions must be combined cleverly in consecutive time
steps in order to create “higher-level actions” like intercepting balls, playing
passes, marking players, or doing dribblings.

2.2 Related Work on Opponent Modeling

Opponent modeling enables the prediction of future actions of the opponent. In
doing so, it also allows for adapting one’s own behavior accordingly. Instance-
based approaches have frequently been used as a technique for opponent mod-
eling in multi-agent games [5], including the domain of robotic soccer [2, 6].

In [15], the authors make their simulated soccer agents recognize currently
executed higher-lever behaviors of the ball leading opponent. These include pass-
ing, dribbling, goal-kicking and clearing. These higher-level behaviors correspond
to action sequences that are executed over a dozen or more time steps. The au-
thors of [14] deal with the instance-based recognition of skills (shoot-on-goal
skill) executed by an opponent soccer player, focusing on the adjustment of the
distance metrics employed. In [8] we argued that opponent modeling is useful
for counteracting adversary agents, but that we disagree with the authors of [14]
claiming that “in a complex domain such as RoboCup it is infeasible to predict an
agent’s behavior in terms of primitive actions”. Instead we have shown prototyp-
ically in [8] that a low-level action prediction can be achieved during an on-going



play using instance-based methods. We grasp this prior work of ourselves now,
addressing the crucial point that we omitted to handle in that paper: Instance-
based learning algorithms learn by remembering instances, which is why, for
certain applications, specifically data intensive ones, retrieval times over the set
of stored instances can quickly become the system’s bottleneck. This issue is a
showstopper in a real-time application domain like robotic soccer simulation.

2.3 Related Work on Index Structures for Efficient Retrieval

Index structures in instance-based methods are supposed to more efficiently
guide the search for similar instances. Before the actual retrieval utilizing an
index structure can take place that structure must be created. Tree-based struc-
tures have often been employed to speed up access to large datasets (e.g. ge-
ometric near-neighbor access trees [4] or nearest vector trees [10]). Tree-based
algorithms that also feature online insertion capabilities include cover trees [3],
boundary trees [11] (see below), or kd-trees [16] where the latter have the ad-
vantage of not requiring full distance calculations at tree nodes.

Boundary Trees [11] are a powerful tree-based index structure for distance-based
search. They consist of nodes representing training instances connected by edges
such that any pair of parent and child node belongs to different classes1. This
fact is eponymous as with each edge traversal a decision boundary is crossed.

Given a boundary tree T and a new query q, the tree is traversed from its
root by calculating the distance between q and all children of the current node,
moving to and traversing successively that child which has the lowest distance
to q. Boundary trees use a parameter k ∈ [1,∞] that determines the maximal
number of children any node is permitted to have. The retrieval is finished, if a
leaf has been reached or if the current (inner) node v has less than k children
and the distance between q and v is smaller than the distance between q and
all children of v. This way, a “locally closest” instance x∗ to the query is found,
meaning that neither the parent(s) of x∗ nor the children of x∗ are more similar.

The tree creation procedure for boundary trees is inspired by the classical
IB2 algorithm [1]. The next training instance xi is used as query using the so far
existing boundary tree Ti−1. If the result of the tree-based retrieval returns an
instance x∗ whose class label does not match the class label of xi (i.e. xi could
not be “solved” using Ti−1), then xi is added as a new child node of x∗.

In [11], Mathy et al. propose to extend the described approach to an en-
semble of boundary trees, which they name a boundary forest (BF). Essentially,
they train an ensemble of (in that paper usually 50) boundary trees on shuffled
versions of the training data set and employ different kinds of voting mecha-
nisms (e.g. majority voting or Shepard weighted average [13]) using the retrieval
results of the boundary trees. The Boundary Graph approach we are presenting
in the next section takes some inspiration from boundary trees which is why we
also use them as a reference method in our empirical evaluations.

1 While the definition given here focuses on classification tasks, a straightforward
generalization to other tasks like regression or mere retrieval can easily be made.



3 Boundary Graphs

It is our goal to develop an instance-based technique that covers both, a method
to decide which instances to store in memory and which not as well as algorithms
to build up and employ an index structure that facilitates an efficient retrieval.
Boundary graphs (BG) in combination with techniques to create and utilize
them, represent the backbone of our approach.

3.1 Notation

In what follows, we assume that each instance x ∈ RD is a D-dimensional tuple
of real values and has a label l(x) ∈ L ⊂ Rm attached to it (where in case of a
classification task L is simply the enumeration of class labels). Distance between
instances is measured using a distance metric d : RD × RD → R+ that for any
two instances returns a non-negative real number d(x, y). Note that we do not
impose any further requirements on d throughout the rest of the paper, except
that, for ease of presentation, we assume it to be symmetric. Furthermore, we
need a metric function dl : L×L → R+ to assess the difference of label vectors.

For a given set of training instances X = {x1, . . . , xn}, a Boundary Graph
B = (V,E) is an undirected graph without loops with a set of nodes V ⊆ X and
a set of edges

E ⊆ {(xi, xj)|xi, xj ∈ V and i 6= j}, (1)

where, by construction, each edge from E connects only instances with differing
labels. This means, for each (xi, xj) ∈ E it holds

dl(l(xi), l(xj)) > ε (2)

where ε > 0 is a threshold that defines when two label vectors are considered to
be different. The definition given so far and the relations in Formula 1 and 2 are
not finalized, most specifically since Equation 1 gives just a subset specification.
We are going to concretize this specification in the next paragraphs, emphasizing
upfront that the boundary graphs we are creating will be a sparse representation
of the case data and, thus, contain only a tiny fraction of the edges that would
be allowed to be contained in E according to Equations 1 and 2.

3.2 Querying a Boundary Graph

Given a query q ∈ RD and a boundary graph B = (V,E), the retrieval algorithm
moves repeatedly through the graph structure, calculating the distance between
q and the current node x ∈ V as well as between q and the neighbors of x,
i.e. for all v ∈ V for which an edge (x, v) ∈ E exists. It successively and greedily
“moves” onwards to the node with the lowest distance to q until some minimum
x? has been reached, which means that d(q, x?) ≤ d(q, x)∀(x?, x) ∈ E.

Importantly, this procedure is repeated for r times, where the starting node is
selected randomly from V each time. Hence, r determines the number of random



BG Predict(q, B, r) BG Retrieve(q, B, r)
Input: query q ∈ RD, Input: query q ∈ RD,

boundary graph B = (V,E), boundary graph B = (V,E) with V 6= ∅,
number r of random retrieval number r of random retrieval restarts

restarts, Output: r-dimensional vector N r
q of

amalgamation function A potential nearest neighbors
Output: BG-based prediction R(q) 1: N r

q ← r-dimensional vector
1: // retrieval 2: for i = 1 to r do
2: N r

q ← BG Retrieve(q,B, r) 3: x? ← random node from V
3: // prediction (cf. Eqn. 4-6) 4: stop← false
4: R(q)← A(N r

q ) 5: while stop = false do
5: return R(q) 6: x← arg minv∈V s.t. (x?,v)∈E d(q, v)

7: if d(q, x) < d(q, x?)
8: then x? ← x else stop← true
9: N r

q [i]← x?

10: return N r
q

Algorithm 1: Boundary Graph-Based Prediction and Retrieval

retrieval starting points from which the distance-guided search is initiated. Con-
sequently, as retrieval result a vector N r

q = (n1, . . . , nr) of r estimated nearest
neighbors is obtained.

Algorithmically, we embed the delineated step (function BG Retrieve in
Algorithm 1) into the superjacent function BG Predict for boundary graph-
based prediction which, effectively, performs both, the retrieval task and the
prediction on top of it. The entries of the vector of r nearest neighbor estimates
are combined to form an overall prediction R(q) using some amalgamation func-
tion A, such that

R(q) = A(N r
q ) = A((n1, . . . , nr)). (3)

For classification tasks, we might use a simple majority vote

A((n1, . . . , nr)) ∈ arg max
t∈L

|{nj |l(nj) = t, j = 1, . . . , r}| (4)

or an inverted distance-weighted voting scheme, like

A((n1, . . . , nr)) ∈ arg max
t∈L

r∑
j=1

{
1/d(q, nj) if l(nj) = t

0 else
. (5)

In a similar manner, for regression tasks the estimated value becomes [13]

A((n1, . . . , nr)) =

∑r
j=1 l(nj)/d(nj , q)∑r

j=1 1/d(nj , q)
. (6)

A pseudo-code summary of the entire retrieval and preciction approach using a
BG is given in Algorithm 1. For the empirical case study presented below we
stick to a simple majority vote according to Equation 4 and employ a normalized
L1 norm as distance measure d. Before, however, we can utilize a BG, we must
build it up which is why we focus on the construction of boundary graphs next.



BG Construct(X , r) BG Train(B, x, r)
Input: set of train instances Input: single (new) instance x,

X = {x1, . . . , xn}, boundary graph B = (V,E),
number r of random number r of random retrieval restarts
retrieval restarts Requires (global variables):

Output: boundary tree B amalgamation function A, metric d and dl,
1: B ← (∅, ∅) label discrimination threshold ε
2: // loop over all instances Output: (possibly extended) boundary graph B
3: for i = 1 to n do 1: if V = ∅ then V ← V ∪ x
4: B ← BG Train(B, xi, r) 2: else
5: return B 3: N r

x ← BG Retrieve(x,B, r)
4: for i = 1 to r do
5: δ ← dl(l(x), l(N r

x [i]))
6: if δ > ε then
7: V ← V ∪ x
8: E ← E ∪ (x,N r

x [i])
9: return (V,E)

Algorithm 2: Construction of and Retain Procedure for Boundary Graphs

3.3 Graph Construction

We assume that the instances x1 to xn from the set of training instances X
are presented to the boundary graph construction algorithm successively. Given
a single training instance xi, the algorithm first queries the boundary graph
Bi−1 = (Vi−1, Ei−1) which has been trained for the preceding i− 1 training in-
stances, yielding a vector N r

xi
= (n1, . . . , nr) of r possible nearest neighbors. The

algorithm then iterates over these nj (j = 1, . . . , r) and, if dl(l(xi), l(nj)) > ε
(i.e. nj does “not solve” xi, which in the case of classification tasks boils down
to l(xi) 6= l(nj)), then xi is added as a new node to Vi−1 and a (bidirectional)
edge (xi, nj) is added to Ei−1. The resulting, extended boundary graph is ac-
cordingly denoted as Bi. To sum up, training instances are added as nodes to
the graph (including connecting edge), if the algorithm stochastically discov-
ers a random retrieval starting point for which the currently existing boundary
graph’s prediction would be wrong and where, hence, a correction is needed.

Again, a pseudo-code summary of the algorithm to constructively building up
a boundary graph for a sequence of training instances X is provided in Algorithm
2, denoted as BG Construct. Note that the algorithm can be easily deployed in
an online setting where new instances arrive during runtime by simply calling the
BG Train function given in the right part of Algorithm 2. Additionally, Figure
1 visualizes exemplary boundary graphs for two synthetic two-dimensional two-
class problem.

Constructing vs. Applying the Graph Structure As we will show below, the al-
gorithms described have a logarithmic retrieval complexity in the amount of
training instances n for the opponent action prediction dataset we use subse-
quently. Accordingly, training time scales mildly as well because each train step



+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

+
+

++

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

Negative Training Instance Not Stored as Vertex
Negative Training Instance Stored as Vertex

Positive Training Instance Not Stored as Vertex
Positive Training Instance Stored as Vertex

+ Test Instance
Edge in Boundary Graph

Fig. 1. Two Exemplary Visualizations of Boundary Graphs for Synthetic Domains:
Out of the 80 training instances (left), 19 are included in the graph’s set of vertices (11
from the negative class, 8 from the positive one), when trained using r = 9. Among
that set of nodes, there are 88 possible edges that would cross the decision boundary.
From those, 40 are included in the graph’s set of edges. The boundary graph for the
“doughnut” domain (right) has been constructed using r = 3. The graph stores 203
out of the 400 training instances and connects them by 534 edges.

essentially includes a retrieve step, rendering the complexity of training to be a
loop of n repetitions wrapped around the retrieval procedure (O(n log n)).

The boundary graph approach has the favorable characteristic to be an any-
time retrieval algorithm. By handling the parameter r of random retrieval start-
ing points within the graph differently during training (rt) and the application
(ra) of the learned graph, i.e. separating rt := r from ra (ra 6= r), one can gain a
significant performance boost by letting ra > rt, given that a sufficient amount
of time is available for the system to respond to a query. This is a desirable
property in real-time and online application settings since the accuracy of the
retrieval grows with ra as we will delineate in the next section.

4 Empirical Evaluation

Our empirical investigations on the boundary graph approach were primar-
ily driven by our target application problem of predicting an opponent soccer
player’s next low-level action. We focus on a dribbling opponent, leaving the in-
vestigation of other opponent behaviors for future work. We first more introduce
the task at hand more precisely and then present achieved classification results
including an analysis of our algorithms’ scaling behavior. In a separate paper
[9], we present detailed results on the performance of our proposed algorithms
for a variety of classical benchmark datasets beyond the realm of robotic soccer.



4.1 Problem Formulation and Data Collection

We focus on the task of predicting a ball leading opponent player’s next dribbling
action, although we stress that our approach could generally be applied to any
other action prediction task as well. Therefore, we selected an opponent agent,
placed it randomly on the field with the ball in its kick range and allowed it to
dribble towards our goal for maximally 20 consecutive time step (or till it lost the
ball) when it was relocated to a new random position. The state of the dribbler
was described by a 9-tuple consisting of the player’s and the ball’s position on
the field (4), the player’s and ball’s current velocity vectors (4) and the angle of
the player’s body orientation (1). The actually performed action (kick, dash, or
turn) was extracted from the game log file, though we might deduce this piece of
information during a match, too, by applying inverse kinematics on two consecu-
tive states exploiting the knowledge about the physics models the Soccer Server
[12] applies. We collected half a million training examples using the described
methodology using a FRA-UNIted agent as dribbling opponent which utilizes
its established dribbling behavior that was trained with reinforcement learning
[7]. The class distribution in this dataset features 7.2% turning, 20.4% kicking,
and 72.4% dashing actions such that a naive classifier that always predicts the
majority class would yield an error of 27.6%. Note that in the context of the
evaluation presented here, we solely focused on the classification of the type of
the performed action, not on its real-valued parameter(s) (cf. Section 2.1).

We compare our boundary graph approach to the classical nearest neighbor
algorithm (which linearly iterates over all stored training instances) as well as
to the boundary forest approach (BF) from the literature (cf. Section 2.3). We
measure performance in terms of the achieved classification error on an indepen-
dent test set as well as in terms of required real-time (on a contemporary 3 GHz
CPU, single-core, i.e. without any parallelization2).

4.2 Results

Table 1 summarizes the remaining classification errors when predicting the op-
ponent’s low-level dribble actions for different training set sizes n. All numbers
reported are averages over 100 repetitions of the experiment using different ran-
dom number seedings. As expected, the nearest neighbor classifier turns out to
be a simple, but computationally prohibitive baseline. When opposing boundary
forests and boundary graphs, it is advisable to compare settings that are con-
ceptually similar, viz when the number t of trees and the number r of random
retrieval restarts match. The result table reports results for r = t ∈ {50, 100}
and shows that boundary graphs slightly, but consistently outperform the forest
approach except for small training set sizes where, however, all approaches “fail”
since their accuracy is not so far off the error of the naive classifier (27.6%) that
just predicts the majority class.

2 We emphasize that all discussed approaches are easily parallelizable and that com-
putation times could, thus, be reduced dramatically given the appropriate hardware.



n k-NN (k = 1) BF (t = 50) BG (r = 50) BF (t = 100) BG (r = 100)

400 27.80 ± 0.48 28.26 ± 0.44 29.41 ± 0.47 27.64 ± 0.45 29.44 ± 0.45
1600 23.92 ± 0.19 25.12 ± 0.21 25.22 ± 0.20 24.71 ± 0.21 25.49 ± 0.20
6400 22.10 ± 0.10 22.14 ± 0.11 21.88 ± 0.11 21.51 ± 0.11 21.92 ± 0.11
25600 18.77 ± 0.06 18.55 ± 0.06 18.07 ± 0.05 17.94 ± 0.05 18.19 ± 0.05
51200 16.64 ± 0.02 16.31 ± 0.04 15.72 ± 0.03 15.75 ± 0.03 15.72 ± 0.02
102400 13.46 ± 0.03 13.27 ± 0.02 12.62 ± 0.02 12.78 ± 0.03 12.61 ± 0.02
204800 8.70 ± 0.01 9.25 ± 0.02 8.77 ± 0.01 8.79 ± 0.01 8.64 ± 0.01
409600 5.42 ± 0.01 5.90 ± 0.01 5.43 ± 0.01 5.55 ± 0.01 5.22 ± 0.01

Table 1. Classification errors and belonging standard errors of the discussed algorithms
in percent subject to different amounts of training data for 100 experiment repetitions.
Better-performing algorithms (between BF and BG only) are highlighted in bold.

The left part of Figure 2 visualizes the scaling behavior of boundary graphs
(black) and boundary forests (gray), reporting the average number of millisec-
onds required to answer a single test query, i.e. to predict the opponent’s next
dribble action, subject to different amounts of training data that has been pro-
cessed to generate the BF/BG. Apparently, boundary graphs need about a third
more computational effort compared to their same-sized tree-based counterparts,
but achieve lower classification errors as discussed in the preceding paragraph. It
is worth noting that we have set the value of the BF parameter k (cf. Section 2.3)
to infinity during all our experiments. Setting k to a finite value would further
reduce the computational requirements of that algorithm, but at the same time
impair its performance even more as delineated by [11].

Another interesting observation is that a boundary graph (r = 50), which
has been constructed using n = 409.6k instances, stores about 60% of them
as vertices in the graph (space complexity grows linearly with n). Yet, during a
BG-based retrieval for a single test query q the distance calculation (which, essen-
tially, represents the computational bottleneck) between q and stored instances
must, effectively, be done for only ≈ 1.8% of the n given training instances.

After all, the chart shows that any of the graph- or forest-based approaches
have a logarithmic time complexity and could very well be deployed practically
by a soccer-playing agent since the retrieval time of less than 40ms (on the men-
tioned hardware) would fit well into a soccer simulation time step (even without
any parallelization). Since the addition of a single new instance requires basi-
cally one retrieval plus a loop over r (which has constant effort in n), it requires
roughly the same amount of computation as processing a test query and, thus,
even an online extension of a boundary graph during a running match is feasi-
ble, for example when observing the current opponent dribbling. By contrast, the
nearest neighbor classifier (also shown in the chart) has linear complexity and
requires more than 50ms already for 8000 stored instances (and even 3000ms
per test query for n = 409.6k) which renders this algorithm practically useless.

An outstanding characteristic of the boundary graph algorithm is its any-
time behavior. By increasing the number of random retrieval restarts during
the application phase (for example in a match, when in a specific time step less



-3%

-2%

-1%

0%

1%

2%

3%

4%

-50% 0% 50% 100% 150% 200% 250% 300%

A
d

d
it

io
n

al
 R

el
at

iv
e 

R
ed

u
ct

io
n

 o
f 

C
la

ss
if

ic
at

io
n

 
Er

ro
r 

A
ch

ie
ve

d
 (

0
%

 =
 d

ef
au

lt
, i

.e
. w

h
e

n
 r

t=
r a

)

Additional Relative Computational Effort when Classifying an 
Instance (0% = default computation, 
using rt=ra random retrieval restarts)

12800 25600

51200 102400

204800 409600

21.37

15.39
17.18 17.95 18.62

10.60
11.98

12.81
13.98

34.94
37.30

39.25 39.53

22.18

25.76

28.63 29.53

0

5

10

15

20

25

30

35

40

0 50000 100000 150000 200000 250000 300000 350000 400000

A
vg

. R
et

re
iv

al
 T

im
e 

p
er

 S
in

gl
e 

Te
st

 Q
u

e
ry

 in
 m

s

Number of Training Instances

k-NN (k=1) BG, r=50
BF, t=50 BG, r=100
BF, t=100

ra=550

ra=450
ra=350

ra=250ra=150
ra=125

ra=100

ra=75

ra=25

Fig. 2. Scaling Behavior of Boundary Graphs: See the text for details.

other computations are done for whatever reason) the accuracy of the prediction
increases. This relationship is visualized in the right part of Figure 2 for a bound-
ary graph that has been constructed using rt = 50 random retrieval restarts. So,
the point of origin represents the “default” setting where rt = ra = 50. For posi-
tive x values the computational budget during application (not during training,
i.e. rt = 50 is not altered) has been increased expressing the relative extra effort
on top of the default in terms of additional real-time. Likewise, negative x values
denote that less computational power is invested into the retrieve process during
testing. The ordinate shows the impact of the described variation of ra in terms
of relative gain/loss in classification performance compared to what is achieved
with the default setting. So, for example, for n = 409.6k training instances (here,
processing a test query for ra = 50 needs 18.6ms on average) we observe that
by doubling the retrieval time (+100%, i.e. 37.2ms, corresponding to ra ≈ 350)
the originally achieved classification error can be reduced by ca. 3.5%.

5 Conclusion

We have proposed boundary graphs as a useful and scalable tool for instance-
based prediction. Although we have focused solely on its use for classification
throughout this paper, the approach is general enough to cover other tasks like
regression or mere instance retrieval as well. We provided algorithms for creating
and utilizing boundary graphs and applied them successfully for the prediction
of the next low-level action of a dribbling simulated soccer player. In so doing, we
found that this approach scales very well and is applicable under hard real-time
constraints even with large sets of training data which are required for high-
quality predictions. Our next steps include the employment of this approach
for determining the real-valued parameters of the predicted action which, of
course, represents a regression task. Moreover, we also intend to evaluate in
depth the performance of boundary graphs for other established benchmark
datasets beyond the realm of robotic soccer.



References

1. Aha, D., Kibler, D., Albert, M.: Instance-Based Learning Algorithms. Machine
Learning 6, 37–66 (1991)

2. Ahmadi, M., Keighobadi-Lamjiri, A., Nevisi, M., Habibi, J., Badie, K.: Using a
Two-Layered Case-Based Reasoning for Prediction in Soccer Coach. In: Proceed-
ings of the International Conference of Machine Learning; Models, Technologies
and Applications (MLMTA’03). pp. 181–185. CSREA Press (2003)

3. Beygelzimer, A., Kakade, S., Langford, J.: Cover Tree for Nearest Neighbor. In:
Proceedings of the Twenti-Third International Conference on Machine Learning
(ICML). pp. 97–104. ACM Press, Pittsburgh, USA (2006)

4. Brin, S.: Near Neighbors Search in Large Metric Spaces. In: Proceedings of the
Twenty-First International Conference on Very Large Data Bases (VLDB). pp.
574–584. Morgan Kaufmann, Zurich, Switzerland (1995)

5. Denzinger, J., Hamdan, J.: Improving Modeling of Other Agents Using Stereotypes
and Compactification of Observations. In: Proc. of 3rd International Conference
on Autonomous Agents and Multiagent Systems. pp. 1414–1415. New York (2004)

6. Fukushima, T., Nakashima, T., Akiyama, H.: Online Opponent Formation Identi-
fication Based on Position Information. In: H. Akiyama, O. Obst and C. Sammut
and F. Tonidandel, editors, RoboCup 2017: Robot World Cup XXI, LNCS. pp.
241–251. Springer, Nagoya, Japan (2017)

7. Gabel, T., Breuer, S., Roser, C., Berneburg, R., Godehardt, E.: FRA-UNIted –
Team Description 2017 (2018), Supplementary material to RoboCup 2017: Robot
Soccer World Cup XXI

8. Gabel, T., Godehardt, E.: I Know What You’re Doing: A Case Study on Case-
Based Opponent Modeling and Low-Level Action Prediction. In: Proceedings of
the Workshop on Case-Based Agents at the International Conference on Case-
Based Reasoning (ICCBR-CBA 2015). pp. 13–22. Frankfurt, Germany (2015)

9. Gabel, T., Sommer, F.: Case-Based Learning and Reasoning Using Layered Bound-
ary Multigraphs. In: Proceedings of the International Conference on Case-Based
Reasoning (ICCBR 2022). Springer, Nancy, France (2022)

10. Lejsek, H., Jonsson, B., Amsaleg, L.: NV-Tree: Nearest Neighbors in the Billion
Scale. In: Proceedings of the First ACM International Conference on Multimedia
Retrieval (ICMR). pp. 57–64. ACM Press, Trento, Italy (2011)

11. Mathy, C., Derbinsky, N., Bento, J., Rosenthal, J., Yedidia, J.: The Boundary For-
est Algorithm for Online Supervised and Unsupervised Learning. In: Proceedings
of the 29th AAAI Conference on Artificial Intelligence. pp. 2864–2870. AAAI Press,
Austin, USA (2015)

12. Noda, I., Matsubara, H., Hiraki, K., Frank, I.: Soccer Server: A Tool for Research
on Multi-Agent Systems. Applied Artificial Intelligence 12(2-3), 233–250 (1998)

13. Shepard, D.: A 2Dimensional Interpolation Function for Irregularly-Spaced Data.
In: Proc. of the 23rd ACM National Conference. pp. 517–524. ACM (1968)

14. Steffens, T.: Similarity-Based Opponent Modelling Using Imperfect Domain The-
ories. In: Proceedings of the IEEE Symposium on Computational Intelligence and
Games (CIG05). pp. 285–291. Colchester, United Kingdom (2005)

15. Wendler, J., Bach, J.: Recognizing and Predicting Agent Behavior with Case-Based
Reasoning. In: D. Polani and A. Bonarini and B. Browning (editors), RoboCup
2003: Robot Soccer World Cup VII. pp. 729–728. Padova, Italy (2004)

16. Wess, S., Althoff, K., Derwand, G.: Using k-d Trees to Improve the Retrieval Step
in Case-Based Reasoning. In: Proceedings of the 1st European Workshop on Case-
Based Reasoning (EWCBR 1993). pp. 167–181. Springer, Germany (1993)


