
Frankfurt University of Applied Sciences
Faculty of Computer Science and Engineering

A Continous Integration system with diversified
opponents and dynamic team configurations for

RoboCup 2D

Ein Continous Integration System mit diversifizierten Kontrahenten und dynamischen

Teamkonfigurationen für RoboCup 2D

Master Thesis by

alexander julian vieth

Date of submission: June 16, 2022

1. Review: Prof. Dr. Eicke Godehardt
2. Review: Prof. Dr. Thomas Gabel

[June 16, 2022 at 21:52 – classicthesis version 4.2]

D E C L A R AT I O N

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst
und keine anderen als die im Literaturverzeichnis angegebenen Quellen be-
nutzt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht
veröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht.

Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst er-
stellt worden oder mit einem entsprechenden Quellennachweis versehen.

Diese Arbeit ist in gleicher oder ähnlicher Form noch bei keiner anderen
Prüfungsbehörde eingereicht worden.

Frankfurt am Main, June 15, 2022

Alexander Julian Vieth

[June 16, 2022 at 21:52 – classicthesis version 4.2]

A B S T R A C T

The team for the Robotic World Cup Initiative (RoboCup) of the Frankfurt
University of Applied Sciences (FRA-UNIted) is utilizing a Continuous Inte-
gration Environment (CI) to automatically run 1000 games of 2D Simulated
soccer against a previous world cup winner every night. This process allows
for a continuous assessment of FRA-UNIted’s performance against a high-
level competitor but runs the risk of overfitting against a specific opponent.
A potential risk of this approach is that even if the performance against the
training team improves, some behavioral faults which might exist against
other teams will remain undetected, thus degrading the overall team perfor-
mance. In this Thesis the existing CI system is reworked to minimize the risk
of overfitting and to allow for a more robust analysis of FRA-UNIted’s gen-
eral performance by allowing for diversification of opponents and defining
arbitrary team configuration values. This system is then used to compare the
previous assumed performance against a new broader performance, as well
as analyzing the consequences of changing certain team configuration values.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

Z U S A M M E N FA S S U N G

Das Team für die Robotic World Cup Initiative (RoboCup) der Frankfurt Uni-
versity of Applied Sciences (FRA-UNIted) verwendet ein ´Continuous Inte-
gration Environment´ (CI) um jede Nacht automatisch 1000 2D-Fußballspiele
gegen einen früheren Weltmeister zu spielen. Dieser Prozess ermöglicht einen
kontinuierlichen Einblick in die Leistungsfähigkeit von FRA-UNIted gegen
eine hochrangige Mannschaft, ist aber aufgrund des gleichbleibenden Geg-
ners anfällig für ´overfitting´. So besteht das Risiko, dass auch wenn sich
die Leistungsfähigkeit gegen das Trainingsteam verbessert, einige Schwach-
punkte im Teamverhalten unentdeckt bleiben, was die Gesamtleistung min-
dern könnte. Im Rahmen dieser Thesis wurde das bestehende CI System
mit dem Ziel erneuert ´overfitting´ entgegenzuwirken und durch diversi-
fizierte Gegner sowie das Definieren von beliebigen Teamkonfigurationspa-
rametern einen besseren Einblick in die allgemeine Leistungsfähigkeit von
FRA-UNIted zu ermöglichen. Dieses System wurde anschließend verwen-
det die bisherige angenommene Leistungsfähigkeit mit einer neuen allge-
meineren zu vergleichen. Zusätzlich wurden die Auswirkungen von Änderun-
gen der Teamkonfigurationsparametern analysiert.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

C O N T E N T S

i thesis 1

1 introduction and motivation 2

1.1 Introduction . 2

1.2 Motivation . 3

2 related work 5

2.1 Helios . 5

3 background 6

3.1 Introduction . 6

3.2 Current Architecture . 6

3.2.1 Introduction . 6

3.2.2 Jenkins Server . 7

3.2.3 Grails Webserver . 8

3.2.4 React Web Application . 8

3.2.5 Data Model . 9

3.2.6 Database . 9

3.2.7 Test Computers . 10

3.2.8 RoboCup Tournament Software 11

3.3 Adjecent Work . 11

3.4 Limitations . 12

4 implementation 13

4.1 Introduction . 13

4.2 General Concept . 13

4.3 Project Setup . 14

4.4 Arbitrary Matchups . 14

4.5 Uploading And Managing Arbitrary Team Binaries 21

4.6 Arbitrary Config Parameter For FRA-UNIted 24

4.7 Matches And Match Statistics . 26

4.8 Web Application . 29

4.9 Additional Work . 29

4.10 CI Workflow . 32

4.11 Database Model . 33

5 results 34

5.1 Introduction . 34

5.2 Measured Datapoints . 34

5.3 Control Experiment . 35

5.3.1 Setup . 35

5.3.2 Results . 36

5.4 Comparing Multiple Matchups 36

5.4.1 Setup . 37

5.4.2 Expectation . 37

5.4.3 Results . 37

5.5 Testing Config Value Significance 40

5.5.1 Setup . 40

5.5.2 Control Experiment . 40

5.5.3 Results . 41

5

[June 16, 2022 at 21:52 – classicthesis version 4.2]

6 future work 44

6.1 Forking HLM . 44

6.2 Login and Security . 44

6.3 Config values for individual teams 44

6.4 Log file analyzer . 44

6.5 Containerization of the python analysis server 44

6.6 Log file player . 44

7 conclusion 45

ii appendix 46

bibliography 47

[June 16, 2022 at 21:52 – classicthesis version 4.2]

L I S T O F F I G U R E S

Figure 1 HELIOS2021 Training Environment[20] 5

Figure 2 Current CI workflow . 7

Figure 3 Current Database Model 10

Figure 4 Routes for the current protocol 14

Figure 5 Matchup Creator - Fixed Mode User Interface 15

Figure 6 Matchup Creator - Commit Mode User Interface 15

Figure 7 Route for protocol creation 16

Figure 8 Example Matchup data in protocol JSON 16

Figure 9 HLM Config Template 17

Figure 10 CI Step - Fetching teams 18

Figure 11 HLM match result file - Match.yml 19

Figure 12 Grails Matchup Classes 20

Figure 13 Matchup Database Tables 20

Figure 14 Team Zip File Contents 21

Figure 15 Team Upload User Interface 22

Figure 16 Grails Team Class . 22

Figure 17 Team Database Table . 23

Figure 18 Team Inspector Page . 23

Figure 19 Routes For Team Management 23

Figure 20 Config Parameter User Interface 24

Figure 21 Grails Config Classes . 25

Figure 22 Config Database Tables 25

Figure 23 Routes For Protocol Results 26

Figure 24 Protocol Results - Menu with 3 matchups selected . . . 28

Figure 25 Protocol Results - Plots 28

Figure 26 Local Python Server Routes 30

Figure 27 Interesting Matchups - Menu 31

Figure 28 Interesting Matchups - Tables 31

Figure 29 New CI Workflow . 32

Figure 30 New Database Model . 33

Figure 31 Win rate VS CYRUS2019 35

Figure 32 Fouls VS CYRUS2019 . 35

Figure 33 Team Behavior vs CYRUS2019 36

Figure 34 Goal Timestamp Histogram vs CYRUS2019 36

Figure 35 Offsides VS HfutEngine 38

Figure 36 Offsides VS CYRUS . 38

Figure 37 Offsides VS Alice . 38

Figure 38 Offsides VS YuShan . 38

Figure 39 Team Behavior vs All . 39

Figure 40 Team Behavior vs CYRUS 39

Figure 41 Team Behavior vs YuShan 39

Figure 42 Team Behavior vs Alice 39

Figure 43 Team Behavior vs HfutEngine 39

Figure 44 Age 3 - Tackles . 41

Figure 45 Age 3 - Passes . 41

Figure 46 Goal Timestamp Histogram - Age 0 42

7

[June 16, 2022 at 21:52 – classicthesis version 4.2]

Figure 47 Goal Timestamp Histogram - Age 3 43

Figure 48 Goal Timestamp Histogram - Age 4 43

[June 16, 2022 at 21:52 – classicthesis version 4.2]

L I S T O F TA B L E S

Table 1 Match Datapoints . 9

Table 2 New Match Datapoints 27

Table 3 Results for foresee_opponents_max_age for value 0 to 5 . 41

[June 16, 2022 at 21:52 – classicthesis version 4.2]

A C R O N Y M S

CI Continuous Integration

API Application Programming Interface

GORM Grails Object Relational Mapping

ML Machine Learning

VM Virtual Machine

OS Operating System

[June 16, 2022 at 21:52 – classicthesis version 4.2]

Part I

T H E S I S

[June 16, 2022 at 21:52 – classicthesis version 4.2]

1
I N T R O D U C T I O N A N D M O T I VAT I O N

1.1 introduction

The Robotic World Cup Initiative (RoboCup) is a long running international
landmark project with the goal of surpassing the human world cup soccer
team by the middle of the 21st Century[12]. Such an endeavor spans over a list
of research fields including robotics and artificial intelligence (AI) which con-
tribute continuously to the landmark goal. RoboCup consists of various dis-
ciplines, such as RoboCupRescue, RoboCupSoccer and RoboCupIndustrial,
which all host a league of their own. For this Thesis only the RoboCup Soccer
discipline is of relevance, which is itself divided into different leagues, based
on the underlying physical properties of the players. Examples are the Hu-
manoid League, the Standard Platform League, and the Simulation League.
While significant progress has been made across all disciplines and subse-
quent leagues[16][7][4] since RoboCups inception in 1997[11], this Thesis will
only focus on the 2D Simulation League to which the Frankfurt University
of Applied Sciences contributes to with the development of its own team
FRA-UNIted.

As the successor of the Brainstormers team, which was established in 1998

by Martin Riedmiller and has been discontinued since 2010, FRA-UNIted has
fueled various research topics in the fields of reinforced machine learning,
multi-agent systems as well as artificial intelligence and has been partici-
pating in RoboCup’s 2D simulation league since 2016[8], placing second in
2017[22].

The 2D simulation league requires each team to provide a coach and 11 player
agents, all of which will operate autonomously. A match is usually divided
into 6000 update cycles (ticks) where each tick every player receives noisy per-
ception data for each of the simulated optical, auditory, and haptic sensors to
act upon. To facilitate these matches, the simulation league utilizes a RoboCup
Soccer Server (rcsserver), which - as of this writing - is maintained and devel-
oped by members of Japan’s top team HELIOS, in an open source project[1].
The server saves every performed action, as well as the connection status for
each player in log files, which can be used to replay a given match and/or
create statistics on a match’s progression. Depending on the configuration of
the soccer server, the number of update cycles can vary, either due to custom
playtime settings or due to overtime and penalty shootouts. In the context of
this thesis, a 6000-cycle match is assumed.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

1.2 motivation 3

This Thesis aims to improve the capabilities of an existing continuous inte-
gration system which performs analysis, processing and displaying of large
quantities of match log files to enable a more accurate assessment on the qual-
ity of FRA-UNIted’s performance. Accurate assessment in this case refers to
a representative and unbiased view on a team’s performance, measured by
win rate, goal distribution and other statistics, on the basis of a large set of
matches.

To validate, test and analyze FRA-UNIted’s progression over the course of
development, a continuous integration (CI) system has been implemented,
along with a web-based user interface. The CI system automatically plays
1000 matches with the newest version of FRA-UNIted against the current
world cup champion CYRUS[13], summarizes each match into a JSON file
and aggregates the resulting match statistics on a team version basis. A web-
based interface allows the user to inspect various datapoints regarding indi-
vidual games and all matches played under a selected version of FRA-UNIted
using a set of plots. Work has also been done to implement a outlier finder
system, which should be used by the CI to automatically find anomalous
matches. Allani[3] also demonstrated such a system for finding outlier in a
large set of match statistics, which will be discussed in later sections. For this
thesis, the goal was to expand the analytic capabilities provided by the CI to
gauge the performance of FRA-UNIted more accurately. Performance - in this
case - is not necessarily defined by the win rate alone but can also describe
the quality of datapoints like pass chains or ball possession, depending on
the target of the analysis.

1.2 motivation

While the current CI Environment certainly is suitable for assessing FRA-
UNIted’s performance to some degree of confidence (since successfully com-
peting against the world champion could indicate good overall performance),
it is limited in describing team characteristics in a general scope. The confi-
dence in the current assessment depends in large parts on the underlying as-
sumption that team performance has transitive properties, such that if team
A beats team B and team C beats A, the implication is that C also beats B.
This property, in general, holds true for real soccer, since the top ranking
teams usually beat the teams in the lower brackets, indicated by the observ-
able trend in point distribution in (for example) the German Bundesliga [6].
The consistency in performance for teams with comparable rankings how-
ever is more volatile in real soccer, as well as in RoboCup. The 2021/2022

Bundesliga results show some weakness in the transitivity: the eventual fron-
trunner FC Bayern München tied to and lost against Borussia M’gladbach, which
ended up in 10th place and lost to 7th place 1. FC Köln twice[21]. 1. FC Köln
in turn, has lost to FC Bayern München twice. This is evidence that individual
team performance is dependend on the given matchup, along with numer-
ous other outside variables (player health, motivation, strategy etc.), so one of
the goals of this Thesis is to enable and analyse multiple matchups and team
configurations with the ultimate goal of building a better understanding of
FRA-UNIteds general performance.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

1.2 motivation 4

Training and validating against the same team might not prepare well against
other teams of similar ranking. This problem is called overfitting and is gener-
ally not desirable, as over-specialization can make a team vulnerable to small
changes in enemy team behaviour. To combat overfitting and to allow for more
control over the training process, this Thesis expands upon the current CI
system with arbitrary matchups, adding matchup-based filtering when view-
ing the results and enabling more team configurability, all while preserving
the CI characteristics of automatically fetching the newest FRA-UNIted ver-
sion every night. This work also compares the performance of FRA-UNIted
by measuring win rate, goal distribution and other datapoints for different
configurations and matchups in the new system against the results from the
current system.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

2
R E L AT E D W O R K

Other 2D RoboCup teams have presented their approach to solve the training
and performance assessment problem. Generally a large amount of matches
is required to reduce the influence of chance on the result, as every game
contains some amount of randomness. In RoboCup 2D, a player agent has a
limited time frame in which a descision on the next move has to be made.
This has the side effect of placing an exact time requirement for a match to
play out - encouraging a distributed approach to playing large amounts of
matches in parallel.

2.1 helios

Team HELIOS is a joint team of Japans Okayama and Osaka Prefecture Uni-
versity and has been a top ranking member of the RoboCup 2D ladder[2][23][24].
In their 2021 team description paper, they describe a performance evaluation
system used for RoboCup2021[20] utilizing SlackBot, Amazon S3 and Google
Sheets. A user can create a job with branch and opponent information as well
as the number of games to a slackbot. A server then assigns client PCs with
the jobs depending on CPU load. Client PCs with high load are considered
busy and are not assigned jobs. Client PCs run the assigned games, analyze
the resulting log files into a CSV file and push them to a shared storage (Drop-
box and Amazon S3). The resulting CSV files are aggregated into a Google
Sheet, which the user can use to evaluate the performance.

Figure 1: HELIOS2021 Training Environment[20]

5

[June 16, 2022 at 21:52 – classicthesis version 4.2]

3
B A C K G R O U N D

3.1 introduction

In this chapter the current CI is described in terms of architecture, workflow,
key components, adjacent work, and limitations. The current CI system uti-
lizes 20 test computers, which fetch the newest version of FRA-UNIted each
night and play 50 matches respectively against the previous world cup win-
ner - CYRUS. Playing a match is followed by a python script, which analyzes
the resulting log files and generates a JSON file containing a summary of the
match with datapoints such as number of goals per side, pass chains and
fouls. These match JSON files are then sent to a Web Server. A Web Appli-
cation gives the user the ability to inspect individual matches using plots
and provides a commit view, where all matches under a selected version of
FRA-UNIted are used to calculate various statistics. The exact contents of the
match JSON file in the current system will be discussed in data model section
3.2.5.

In this chapter, the current architecture is described in detail, along with its
limitations. This will function as the basis upon which all changes were made
in the context of this Thesis. A brief overview on the configurability of FRA-
UNIted in the current system is also given, as these interfaces will be used in
later sections. In section 3.2 the current architecture is discussed, along with
the relevant technologies. Section 3.4 contains the limitations and potential
risks of the current system in the context of game and performance analysis
as well as architectural limitations. There has also been work done to further
improve analytic capabilities, which are discussed in section 3.3.

3.2 current architecture

3.2.1 Introduction

The current CI system consists of 5 components:

• A Jenkins server providing team builds and version info’s

• A Grails Web Server to collect and service match data and statistics

• A React Web Application

• 20 test computer running Shell and Python scripts

• RoboCup tournament software

Each of these components has been altered for this thesis to various degrees,
so it is helpful to examine the role that each component fulfills in the current
system. The only interaction a user has with the current system is by pushing
a new commit to the Git repository, registered in the Jenkins server and by
looking at the visualized results on the React Web Application. As the name

6

[June 16, 2022 at 21:52 – classicthesis version 4.2]

3.2 current architecture 7

suggest, the CI system functions mostly autonomously, with the process of
fetching the newest FRA-UNIted build, playing/analyzing games and push-
ing summaries to the webserver is initiated by the test computers, and not on
demand compared to team HELIOS’s training setup[20]. This has the advan-
tage of the collecting server only being loosely coupled to the test computers,
as the server can be oblivious to the source of incoming matches. Scaling this
system up or down requires only minimum effort. To enable the over-night
running of matches, the test computers are configured with a cronjob, which
fetches the newest version of the CI scripts and executes a specific entry point
script, resulting in the following workflow:

Figure 2: Current CI workflow

3.2.2 Jenkins Server

Jenkins is a web-based system for Continuous Integration which provides on-
demand building and referencing of projects. In the case of the current CI
system, Jenkins is used to fetch the newest build of FRA-UNIted’s code base
as well as the corresponding commit ID, which is used to link a given match
to a version of the team. In terms of software architecture, Jenkins provides
an additional layer of abstraction, as the end user doesn’t need special knowl-
edge on a given version control system to receive a build, in addition to being
invisible to the developer using said version control system.

The CI system relies on 3 Jenkins routes to exist:

• fetch newest FRA-UNIted build (used by the test computers)

• fetch newest commit ID (used by the test computers)

• fetch meta data for a given commit ID (used by the web application)

[June 16, 2022 at 21:52 – classicthesis version 4.2]

3.2 current architecture 8

3.2.3 Grails Webserver

To collect the analyzed match data and provide the Web Application with
aggregated matches on a commit basis, a Grails Web Server is used. Grails
is a framework for the creation of Web Applications and REST APIs[5], the
latter of which has been done for the current CI system. The REST API pro-
vides routes to fetch specific matches, commit statistics, lists of all matches
and commits and a route which calculates, and formats commit data for a
histogram plot. Additionally, a route exists to trigger a rudimentary outlier
finder, which searches through all new matches, for the highest and lowest
value for certain datapoints. This route, however, is not used by the Web Ap-
plication, not the test computers, as of this writing. The API also exposes a
route to save files to the filesystem of the server, which is used to upload log
files produced by the test computers. Grails implements a model, view con-
troller pattern[14], where controller classes are the organizing entry points
for HTTP-requests, domain classes define the data which is being operated
on (Model) and view classes, which can contain Markup to be rendered in the
HTTP-response. Grails also offers various tools for abstraction, such as Grails
Object Relation Mapping(GORM), which uses Hibernate to create database ta-
bles based on Grails domain classes and automatic URL mapping based on
Grails controller classes which by default contain Create, Read, Update, Delete
(CRUD) functions, aimed at REST API design.

3.2.4 React Web Application

React is a component based framework for the development of web inter-
faces, created and maintained by Meta (previously Facebook)[18]. In this The-
sis, React will refer to ReactJs. React, along with ReactBootstrap (a front-end
framework for ReactJs) allows development using regular JavaScript and can
be compiled to an optimized set of plain JavaScript files. This functionality
makes the project highly compatible with almost every browser and require
no additional software on the client side. The current CI system also utilizes
the open source graphics library Plotly[17] for the creation and rendering
of plots. The current React project has 3 main pages: a specific match page,
where a match ID can be selected from a dropdown to view the match JSON
file in the form of a scatter plot and stacked bar chart. The second main page
allows the user to select a specific commit and view various plots containing
all matches played under the commit, alongside some meta data, such as the
commit message. The last main page aggregates all commits and displays the
result in the same plots as the specific commit page.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

3.2 current architecture 9

3.2.5 Data Model

The core of the current and new version of the CI system are the before men-
tioned match JSON files - produced by a log file analysis script written in
Python. These match files contain a variety of the datapoints such as goals,
ball control and tackles in an attempt to summarize a given match in numer-
ical form. Most of the datapoints have an _l or _r suffix indicating the left or
right team. Each match file contains the following datapoints:

Name Type

id Number

date_created String

commit_id String

team_r team_l String

possession_r possession_l Percentage Number

ball_on_side_r ball_on_side_l Percentage Number

passes_r passes_l Count Number

total_shots_r total_shots_l Count Number

shots_on_target_r shots_on_target_l Count Number

fouls_r fouls_l Timestamp Array

corners_r corners_l Timestamp Array

free_kicks_r free_kicks_l Timestamp Array

offsides_r offsides_l Timestamp Array

yellow_cards_r yellow_cards_l Timestamp Array

red_cards_r red_cards_l Timestamp Array

goals_r goals_l Timestamp Array

pass_chains_r pass_chains_l Timestamp Array

tackles_r tackles_l Timestamp Array

Table 1: Match Datapoints

3.2.6 Database

As GORM creates and updates database tables based on the given domain
classes, there exists multiple tables in the database which are not used. This
is due to some classes functioning as transitional data holders (storing data in
objects to communicate between method calls), classes no longer being used
and not deleted, or have been altered to no longer contain certain member
variables. Such tables will not be included in the database models presented
in this Thesis, as they are more utility than core functionality and would
pollute the diagrams visibility.

The current CI system is mainly based on two database tables: a match ta-
ble, where each row contains the data from an analyzed match log file and a
commit table, where each row is mapped to a unique commit ID. The com-

[June 16, 2022 at 21:52 – classicthesis version 4.2]

3.2 current architecture 10

mit table holds statistics of match info’s, aggregated by the commit ID field.
As matches are run each night, the commit statistics must be updates if new
matches are introduced under the same commit ID. Based on this, the follow-
ing database UML diagram is constructed:

Figure 3: Current Database Model

3.2.7 Test Computers

The test computers are 20 physical devices, as opposed to virtual machines
(VM), which run on the Linux based Open Suse operating system. Every de-
vice has a cronjob set up, which executes a predefined script at 8pm local
time, which in turn initiates the previously mention CI workflow. Crucially
this initial script fetches the newest version of the CI scripts from git at the
start, allowing convenient control over an arbitrary amount of test comput-
ers, without the need for a direct connection. These scripts are written for
the Linux bash shell command line interpreter. To analyze the log files and
upload the result to the webserver, the test computers run a set of python
scripts.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

3.3 adjecent work 11

3.2.8 RoboCup Tournament Software

The RoboCup Soccer Server (rcsserver) is the standard platform to compute
RoboCup matches and is also used for the world cup tournaments. On top
of the rcsserver, the CI system uses the Hech League Manager(HLM), created
by Hechenblaickner in 2004[10], which is a ruby program for starting and
managing RoboCup tournaments. HLM offers different types of tournaments,
such as round robin, one-vs-all, or a predefined list of matches. The current
system runs HLM on a one-vs-all repetition mode, which plays a given num-
ber of matches with the first defined team against all other specified teams.
Since the only opponent team is CYRUS, this effectively results in N matches
against CYRUS, with N being the number specified in the number of repeti-
tions variable. This is value is set to 50, which results in 1000 matches with
the 20 test computers. As HLM handles the team binaries, it expects a spe-
cific folder structure where the teams can be found, which can be configured
using a YAML configuration file. When specifying teams in the HLM config,
the team’s name has to match up with the folder name, the respective team is
located in. Since the current system only deals with CYRUS and FRA-UNIted,
this folder structure is hard baked into the CI shell scripts.

3.3 adjecent work

In a previous Thesis[3], Allani demonstrated a machine learning system, writ-
ten in Python, to find outlier in a set of 1000 RoboCup matches by using 2

different algorithms:

• Local Outlier Factor (LOF)

• Isolation Forest (IF)

While both algorithms can be used to find outlier in a given sample, they
achieve this goal in different ways and may not land on the same outlier.
LOF measures the distance to each point in a sample to find regions of high
and low density. Regions of high density, i.e., with a comparatively short
average distances between points in the sample, are called cluster. Finding
outlier means finding a point with the greatest distance to the nearest cluster.
IF segregates a given sample into so called partitions, the shape of which
is generated randomly but within boundaries, defined by the minimum and
maximum values in the sample. IF is fast and has comparatively low memory
requirements.

While Allani showed this system to be functioning, it has not yet been in-
cluded into the CI system. As the Thesis only aimed to show that outlier can
be found in the context of RoboCup matches, it lacks functionality that would
make it accessible to the CI system in a production setting, such as an inter-
face to calculate outlier on demand, a device where the python script is exe-
cuted and some limitations when feeding the system less than 1000 matches.
As will be discussed in the following limitations section3.4, the current sys-
tem does not handle log file logistics, thus including Allanis outlier finder
requires work to be done in expanding the grails webserver, the database and
CI scripts.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

3.4 limitations 12

3.4 limitations

There certainly is always room for improvement in a project such as the FRA-
UNIted’s CI environment, however as of this writing the current system can
be improved by 3 major changes:

• Allowing arbitrary opponents

• Allowing multiple matchups at once

• Allowing configurability of FRA-UNIted

The current system always plays a fixed number of matches against a fixed op-
ponent with the configuration of the newest FRA-UNIted version. Moreover,
the only way to change either of these factors, is by having a user manually
copy a new team binary to the version control system under the right folder
and edit the HLM tournament configuration file to fit the new team binary
folder. To try out different FRA-UNIted configurations a user must create
and push a new team commit with the given values, thereby polluting the
commit history. From a software development point of view, the quality of
such a CI system, besides producing correct results, lies in the practicality
and useability, which must reach a certain level, otherwise the system won’t
be used. Not having a streamlined process for such a setup increases the like-
lihood of mistakes being made, which is one of the motivating factors behind
this Thesis. By allowing multiple different matchups and defining configu-
rations remotely, the hope is to gain a more sophisticated understanding of
FRA-UNIteds performance, as well as being able to experiment with differ-
ent configurations relatively quickly and gauge the resulting impact on team
performance.

Additionally, the existing adjacent work, mentioned in 3.3 has not yet been
included into the current CI system. While not at the core of this Thesis,
having a working outlier detection with the results being accessible via the
web application, would contribute to the overall goal of this work - expanding
the analytic capabilities of the CI system.

In the following chapter, the implementation of an extension to the current
CI system is discussed. The focus of this implementation is to tackle the limi-
tations mentioned in this chapter, along with additional features and reworks
of existing components.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4
I M P L E M E N TAT I O N

4.1 introduction

In this chapter, the details of the necessary changes and additions to the cur-
rent CI system to realize the goals of this Thesis are discussed. These goals
include solutions to the limitations mentioned in 3.4, as well as the reasoning
behind the software design and architecture decisions made during this The-
sis. The following sections are separated into discussing the high-level ideas,
listing the concrete places that need changes to facilitate these ideas and the
actual implementation of the proposed changes. As large parts of this work
are centered around software engineering, a design pattern or paradigm is
mentioned at places where it was consciously applied.

The overarching goal of this thesis is to facilitate the following abilities to the
user of the CI system:

• Specify certain parameters regarding the CI’s general behavior

• Specify arbitrary matchups

• Upload and manage arbitrary team binaries

• Set arbitrary config parameters in arbitrary config files for FRA-UNIted

• Inspect the resulting matches and statistics

• Extra: Download matches found by the outlier finder

To implement these features, almost every part of the current system had
to be altered to various magnitudes, as it was not designed to deviate from
its fixed settings. The following sections deal with each feature separately,
although there occasionally exist some overlap.

4.2 general concept

To allow the features mentioned above, the first step was to move away from
having the commit ID as a central key to connect matches. The main reason
for this decision was that a commit is not a great candidate to group matchups
or configurability under, in a software architecture sense. A commit ID is
a representation of a version of FRA-UNIted and so is disjointed from the
defined matchups or configuration. This point becomes clear when a commit
only contains minor changes or refactoring’s. In such a case the matchups and
configurations remain the same but would now have to be associated with a
new commit ID.

The new system functions around so called protocols, which encapsulate a
training run. A training run is what is executed by 20 test computers every
night, and which was previously static - besides always fetching the newest

13

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.3 project setup 14

version of FRA-UNIted. The new system allows the user control various as-
pects of the training run, such as the number of games played, which teams
are to play against each other and how the teams are to be configured be-
fore starting the matches. These values are grouped together under a protocol,
which functions as the central organizing key from a user and software ar-
chitecture perspective. A User can create and view protocols using the Web
Application, which will be discussed in its own section4.8. To summarize: the
new system centers around user defined protocols, which connect all infor-
mation relevant for the nightly training runs, such as matchups, configuration
values and setup scripts.

4.3 project setup

The new system builds on top of the currently existing one and therefore
shares the technologies mentioned in the background chapter 3. The 4 big
components in this system are the Grails Web Server, CI shell scripts, Jenkins
server and the React Web Application.

The Grails Web Server has been extended to expose a set of new routes, which
will be mentioned for each component where they are used in. For the general
concept Grails now provides routes to fetch various aspects of the current
protocol.

[GET] /protocol/current # All protocol data

[GET] /protocol/current/id # Protocol ID

[GET] /protocol/current/yaml # HLM configuration file

[GET] /protocol/current/teams # Distinct team names

Figure 4: Routes for the current protocol

These routes are used in the core CI shell script runHLM.sh, setting up all the
required files and folders to realize a protocol. The HLM config is a YAML
file and is built from a template on the Grails server, when a protocol is being
created. HLM offers multiple modes for the tournament to be played, along-
side parameters such as the path where team binaries are located and where
the rcsserver executable can be found. The detailed description of how the
HLM config file is constructed will be covered in the Arbitrary Matchups sec-
tion 4.4. The Jenkins server remains unchanged and continues to provide the
current build of FRA-UNIted, as well as the corresponding commit id. The
React Web Application overhaul will be discussed in section 4.8. Lastly the
workflow of the new CI system will be visualized and summarized in section
4.10.

4.4 arbitrary matchups

For the implementation of arbitrary matchups, a top-down approach was
used. Moreover, the design and capabilities of the user interface via the Web
Application was the first step taken after conceptualizing the protocol system.
Starting off, a divide and conquer approach was used to assume that certain
features already exist, prior to development, such as the ability for a user to

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.4 arbitrary matchups 15

upload and manage teams. This approach forced a loosely coupled imple-
mentation since no specific features, to closely couple to, existed yet. To allow
arbitrary teams and keep the CI characteristic of automatically fetching the
newest FRA-UNIted version the user can choose between a fixed or commit
protocol mode.

Figure 5: Matchup Creator - Fixed Mode User Interface

Figure 6: Matchup Creator - Commit Mode User Interface

In fixed mode, both teams in a matchup can freely be selected, while the com-
mit mode sets the left team to the reserved team name FRA-UNIted-NEWEST.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.4 arbitrary matchups 16

This name orders the test computers to fetch the newest version from Jenkins
instead of requesting a uploaded team binary - closely resembling the cur-
rent CI system. The selected matchups are added to the protocol object in
JavaScript along with the selected mode. When creating a protocol, the proto-
col object is stringyfied into a JSON string and sent to the Grails Web Server
using a new route:

[POST] /robocup/protocol/new # Create new protocol

Figure 7: Route for protocol creation

{

"mode": "commit",

"matchups": [

{

"team_l": {

"id": 1,

"name": "FRA-UNIted-NEWEST"

},

"team_r": {

"id": 5,

"name": "HfutEngine2021"

}

},

{

"team_l": {

"id": 1,

"name": "FRA-UNIted-NEWEST"

},

"team_r": {

"id": 3,

"name": "Alice2021"

}

}

]

.

.

}

Figure 8: Example Matchup data in protocol JSON

This data is used by the Grails Web Server to build the HLM YAML config
file, which is later pulled by the test computers. Grails uses a static template
to build the HLM config, which is parsed and edited using the snakeyaml java
library.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.4 arbitrary matchups 17

mode: matchlist

title: FraUNIted CI

server_conf: ./config/rcssserver/server_official.conf

player_conf: ./config/rcssserver/player_official.conf

teams_dir: /tmp/robocup/hlm/teams/

agent_range: 1..12

game_log_extension: .rcg

text_log_extension: .rcl

match_sleep: 10

stylesheet_url: results.xsl

server: localhost

rcssserver_bin: /home/projekt/robocupci/bin/rcssserver

statistics: true

statistics_bin: /tmp/robocup/robocup_log_analyzer/RoboCup_main.py

statistics_dir: /tmp/robocup/logs

hosts: [localhost, localhost]

matches: []

Figure 9: HLM Config Template

The HLM tournament mode match list allows the user to specify a list of
tuples [team_l, team_r] under the matches key in the YAML config, where the
entries of the tuple are the folder names of the respective teams. Previously a
repetition mode was used in the HLM file, along with a number_of_repetitions
value set to 50, to play 50 games. This value is not recognized in match list
mode, where the length of the match list value determines the number of
games played. When defining a protocol, the user can choose the number
of games to be played, which can be useful to run different protocols more
quickly with less games each. This value is set to 50 by default to preserve the
previous configuration. When defining more than one matchup, the desired
number of games must be distributed evenly, as every test computer plays
the same matches. The number of matches per matchup N is determined
by N = bnl c where n is the desired number of matches and l the number of
defined matchups. This will undercut the desired number of matches in some
cases, which can either be accounted for by increasing the number of matches,
letting the protocol run another day or be tolerated, as a small number of
matches should not impact the results to a meaningful degree on average.

The CI script on the test computers first pulls and stores the created YAML
file from the Web Server to the HLM tournament folder, as is required by
HLM. HLM now expects folders with name of the teams specified in the
match list to exists in the folder specified in the config file. The CI script pulls
the required team names from Grails and sets up each team individually in a
loop. This process can be found in pseudo code form below.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.4 arbitrary matchups 18

Fetch and store HLM config

FETCH /robocup/protocol/current/yaml INTO hlm/tournament/config.yml

Fetch teamnames

FETCH /robocup/protocol/current/teams INTO $teamnames

FOR $name IN $teamnames:

processTeam($name)

processTeam($teamname):

teamFolderPath = hlm/teams/$teamname

teamZipPath = $teamsFolderPath.zip

Check if the teamname is the reserved FRA-UNIted CI name

IF $teamname IS ’FRA−UNIted−NEWEST’:
Fetch latest build from Jenkins

FETCH /job/RoboCup/ws/*zip*/HelloWorld.zip INTO $teamZipPath

Fetch latest commit id and overwrite the current commit id file

FETCH /job/RoboCup/lastBuild/api/xml?xpath=//lastBuiltRevision/

SHA1 INTO $commitIdFile

Unpack and build FRA-UNIted

UNZIP $teamZipPath INTO $teamsFolder

GOTO $teamsFolder/robocup

MAKE

RENAME $teamsFolder/robocup $teamFolderPath

ELSE

IF $commitIdFile EXISTS:

If a commit ID file exists nothing has to be done.

Overwriting is only done for FRA-UNIted-NEWEST

ELSE:

If no commit id file exist, a default is created

WRITE ">−1<" INTO $commitIdFile

fi;

Unpack team binary to

FETCH /robocup/teams/zip/$teamname INTO $teamZipPath

UNZIP $teamZipPath INTO $teamFolderPath

DELETE $teamZipPath

fi;

Figure 10: CI Step - Fetching teams

It is important to note, that because the rcsserver is unable to play matches
if both teams announce themself with the same name, the user has to make
sure that uploaded team binaries do not specify the same team name. Two
versions of FRA-UNIted, for example, must not both announce themself as
’FRA-UNIted’, rather ’FRA-UNIted-A’ and ’FRA-UNIted-B’. As the way to store
the announced team name is not regulated with a common configuration file,
each team is free to include its name in any way it wants. Therefore, this is
an aspect which could not directly be accounted for by the new CI system,
without having major requisites be pushed onto the user. An approach to
combat this limitation has been implemented and is going to be discussed in
the team upload chapter 4.5. As the user should be free to choose the name

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.4 arbitrary matchups 19

of the uploaded team, match JSON files produced after each game need to
also contain the user-given name for the respective teams. Otherwise, it will
be impossible to map a given match file to a matchup, because the logfiles
produced by the rcsserver only contain the announced name, which is now
allowed to be separate from the user-given name. To work around this, the
script parses a match result file, generated by HLM named match.yml to figure
out the respective team names and sides.

team_l:

country: Germany

team_dir: "/tmp/robocup/hlm/teams/FRA-UNIted-NEWEST"

exception: false

team_r:

country: China

team_dir: "/tmp/robocup/hlm/teams/YuShan2021"

exception: false

statistics: true

scoreboard: true

robocup2flash: false

Figure 11: HLM match result file - Match.yml

Here the team side is mapped to the user-given name via the team_dir value.
Since this is used to parse the user-given team name, the Web Application
does not allow the slash character ’/’ in the name when uploading a new
team, as the script searches for the last index if the ’/’ character in the team_dir
value. From a software development point of view, this is a weak solution, as
it relies on a component which has no direct relation to what it is used for.
Eventual changes in the future to the format of this file will have undesired
consequences and will break the CI script, as well as the match filtering when
viewing the protocol results. An alternative solution to this issue will be dis-
cussed in the future works chapter 6.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.4 arbitrary matchups 20

As GORM handles the creation of database tables, the design of the database
is mostly auto-generated. However GORM allows the user to influence the
database table relations by using various keywords, such as belongsTo and has-
Many among other directives. belongsTo accepts a class definition and orders
GORM to append a foreign key pointing at the defined class to the database
table of the current class. hasMany is GORM’s approach to persist lists of class
instances as a member of another class. To keep the classes organized, a proto-
col hasMany matchups which in turn contain team info objects with the name
of the selected team.

class MatchUp {

TeamInfo team_l

TeamInfo team_r

static belongsTo = [trainingProtocolData: TrainingProtocolData]

}

class TeamInfo {

String name

}

Figure 12: Grails Matchup Classes

This structure provides a clear representation of what is being stored, remains
readable and can be extended with future datapoints with relatively low ef-
fort. This remains true for the database table design generated by GORM
using the relations specified:

Figure 13: Matchup Database Tables

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.5 uploading and managing arbitrary team binaries 21

4.5 uploading and managing arbitrary team binaries

The teams that a user can select when defining a protocol have to be up-
loaded via a newly added Upload Teams page in the Web Interface. To allow
for personalized organization, the user can choose an arbitrary name under
which the team will be referenced later - in the match results as well as when
filtering matches in the backend. To upload a team, the user must select a
zip file containing the binary of the desired team and provide a team name.
While the name of the zip file is not important, the format its contents are. A
requirement of the new system is that the team must be in a .zip format and
unpacking the file must result in a folder which contains the start and kill
scripts for the rcsserver. Below an example with the using a FRA-UNIted bi-
nary. The arrow represents the unzipping process: unzip file.zip -d target_folder
on a Linux system.

agent/

coach/

start

FRA-UNIted.zip −→ kill

start_team_fra-united.sh

start_team.sh

team.yml

Figure 14: Team Zip File Contents

Since teams are free to choose their own structure on how they manage their
required files, some problematic cases arise and require special knowledge on
the given team. For example the Romanian team Oxsy, which has placed 6th
at the last world cup, requires a specific configuration file to contain a list of
absolute paths to the teams binary folder in order for the team to work prop-
erly. For organizational puposes every manual change to the test computer
or Web Server is avoided when possible. To compensate for teams needing
special configuration, an additional setup script can be uploaded alongside
the team’s binary. The script is executed after a team has been set up in the
process described in 10, and allows the user to perform a specialized setup
of the given team. To support this, the script is called with 2 command line
arguments: $1 = absolute path to the unpacked team folder, $2 = the user-
given name for the team. In the case of Oxsy a script is used to set the config
paths manually to the provided team folder path. As the new system attempts
to allow arbitrary teams, a requirement was to avoid including functions to
accomandate a specific team, so the choice was made to let the user be in
charge of everything that needs to be done to make a team work - only pro-
viding an interface the user can use to streamline the process. This makes the
new system more independent in regard to the specific implementation of a
given team. This requirement was inspired by the Dependency Inversion Princi-
ple of the SOLID design principles of object oriented programming[15], which
states that entities must depend on abstractions, not on concretions. In this
case, the concrete steps needed to enable a team are abstracted away, using
the script structure. From the systems point of view, it can be assumed that,
if a setup script was uploaded, running the script will fulfill all the necessary
requirements of the given team.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.5 uploading and managing arbitrary team binaries 22

The Web Application has been extended to enable the team and script up-
load, along with additional checks regarding the requirements directed at the
team’s name and hints regarding the format of the zip file contents. Since a
setup script is not always needed, its upload is optional.

Figure 15: Team Upload User Interface

A team is uploaded via a HTTP multipart form, containing 1 or 2 form entries.
The Web Server expects a multipart request form with a file entry named
’teamzip’ and optionally searches for another entry named ’setupScript’. The
corresponding byte arrays are stored under the given team’s name. Team
binary sizes can also vary drastically in size, with the binary of team CYRUS
in 2021 being 48.5 MB, whereas team Yushan’s 2021 binary only measures 2.8
MB. The setup scripts files are expected to be small with around 2-15 KB. The
maximum blob size in the database was set accordingly, with an added safety
margin, as team binary sizes are especially difficult to predict in the future.
The maximum size for team binaries is set to 100 MB. Setup scripts can be up
to 250 KB large.

class Team {

String name

byte[] file

byte[] setupScript

static constraints = {

file(maxSize:100000000)

setupScript(maxSize: 250000)

}

}

Figure 16: Grails Team Class

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.5 uploading and managing arbitrary team binaries 23

Figure 17: Team Database Table

To enable the user to manage the uploaded teams, a page in the Web Appli-
cation has been created, which allows the user to see all uploaded teams, as
well as the option to download the team binary and setup script. The user
can also remove teams, using this page.

Figure 18: Team Inspector Page

To facilitate the upload, download and deletion of teams, additional routes
have been added to the Grails Web Server. These routes are used by the Web
Application, as well as the CI script when fetching the teams specified in the
protocol.

[GET] /teams/remove/$teamname # Remove the team

[POST] /teams/new/$teamname # Add a new team

[GET] /teams/all # Fetch all teamnames

[GET] /teams/zip/$teamname # Download the binary

[GET] /teams/setupScript/$teamname # Download the setup script

Figure 19: Routes For Team Management

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.6 arbitrary config parameter for fra-united 24

4.6 arbitrary config parameter for fra-united

Large aspects of FRA-UNIted are either directly or indirectly influenced by
multiple config files, each containing configuration values regarding certain
team components, such as the coach or the general player. A use case often
found in development, is trying out various config values to assess the impact
on the team’s performance, which is a great fit for the changes made in this
Thesis. Using top-down development again, the user interface was build first,
with the requirement of being able to set arbitrary config values for multiple
config files. As of this writing, the config file format used by FRA-UNIted is a
dialect of the INI format[ini] and therefore is split up into sections, containing
key value pairs ’key = value’. FRA-UNIted’s config files do not a INI-typical
default section, instead, global config entries are places section less at the start
of the file. Based on this, the following Web Interface was implemented:

Figure 20: Config Parameter User Interface

The config filename is a relative path, rooted in the FRA-UNIted team folder.
This way the exact location of a given config file is not relied upon by the
new CI system - giving the user more freedom to organize the files himself.
Using the ’Add Config’ button, creates another form in the same style as seen
in the graphic above 20. Adding a config entry extends the config form with
an additional section-key-value input. When creating a protocol, the desired
config values are attached to the request JSON body, which is send to the
Grails Web Server. The GORM relation directives are again utilized to define
relation between the protocol and config class. This impacts the way GORM
creates the database tables.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.6 arbitrary config parameter for fra-united 25

class Config {

String fileName

static belongsTo = [trainingProtocolData: TrainingProtocolData]

static hasMany = [entries: ConfigValue]

}

class ConfigValue {

String sectionName

String key

String value

static belongsTo = [config: Config]

}

Figure 21: Grails Config Classes

As done for the matchups, the belongsTo and hasMany relations are used,
which causes GORM to add a foreign key in the Config table to the Train-
ingProtocolData table. In this case a Config has many config entries, which are
linked to a config row using the config_id column. The resulting database
model has the following structure:

Figure 22: Config Database Tables

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.7 matches and match statistics 26

4.7 matches and match statistics

In the current system functions around the commit ID, attached to the match
JSON files created by the test computers. The new system is structured around
protocol IDs which in turn can contain matches with different commit IDs.
The user now should be able to view the current plots with different sources,
as the underlying datapoints have not changed. Currently, these plots expect
a commit class mentioned in 3, which is calculated based on all matches un-
der the given commit. This class has been rebranded to a MatchBatch, which
represents the statistics of an arbitrary list of matches. The new system then
allows the creation of MatchBatches based on the user selection:

1. All matches under a protocol

2. All matches in a matchup under a protocol

3. All matches with a certain commit ID under a protocol

4. A combination of 2 and 3

This allows efficient reuse of the same classes and only requires small changes
to the plot classes in the Web Application, which works towards the software
engineering principle Don’t Repeat Yourself (DRY). The principle encourages
the reuse of code, which in this case meant streamlining the plot data source
to the same MatchBatch class and then reuse said class for every plot instance.
The new system exposes various routes to fetch different sets of MatchBatches
for a given protocol:

[GET] /protocol/$protocolId/results/matches

[GET] /protocol/$protocolId/results/matches/batch

[GET] /protocol/$protocolId/results/matches/$matchUpId

[GET] /protocol/$protocolId/results/matches/$matchUpId/batch

[GET] /protocol/$protocolId/results/matches/$matchUpId/$commitId

[GET] /protocol/$protocolId/results/matches/$matchUpId/$commitId/batch

[POST] /protocol/$protocolId/results/matches/paramBatch

[POST] /protocol/$protocolId/results/histogram

Figure 23: Routes For Protocol Results

Using the paramBatch route requires matchups and commit ID to be included
as JSON objects in the request body.

As discussed in the arbitrary matchup section 4.4, the CI system uses the
user-given name of the uploaded teams, as opposed to the name the teams
use to announce themself to the rcsserver. The announced name can be found
in the logfile produces by the rcsserver after a match, whereas the user-given
name is parsed from a file created by HLM. The match JSON, which is sent
to the Web Server, has been extended to also include the parsed team name,
protocol ID and the log filename which will be discussed in the additional
work section 4.9. This leaves the match data in the following state under the
new system:

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.7 matches and match statistics 27

Name Type

id Number

date_created String

protocol_id Number

log_file_name String

commit_id String

matchup_team_name_r matchup_team_name_l String

team_r team_l String

possession_r possession_l Percentage Number

ball_on_side_r ball_on_side_l Percentage Number

passes_r passes_l Count Number

total_shots_r total_shots_l Count Number

shots_on_target_r shots_on_target_l Count Number

fouls_r fouls_l Timestamp Array

corners_r corners_l Timestamp Array

free_kicks_r free_kicks_l Timestamp Array

offsides_r offsides_l Timestamp Array

yellow_cards_r yellow_cards_l Timestamp Array

red_cards_r red_cards_l Timestamp Array

goals_r goals_l Timestamp Array

pass_chains_r pass_chains_l Timestamp Array

tackles_r tackles_l Timestamp Array

Table 2: New Match Datapoints

Visualizing the match results has previously been done using an array of dif-
ferent plots, such as pie charts, box plots and histograms. By changing the
data source object these plots expect to the before mentioned MatchBatch, the
new system can reuse large parts of the established dashboard. The plot data
sources are now reloaded based on the user’s selection of protocol, matchups
and commit ID. Sticking with the top-down design approach, the user inter-
face was constructed first. To allow the user to compare the performances of
one or more matchups, a list of buttons can be toggled on or off - one for each
matchup. Selected matchups are colored black. The protocol and commit ID
can be selected using dropdowns.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.7 matches and match statistics 28

Figure 24: Protocol Results - Menu with 3 matchups selected

Figure 25: Protocol Results - Plots

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.8 web application 29

This user interface and the named routes will be used when discussing the
results later and should be familiar to users of the current CI system, as the
plots on the surface remain the same.

4.8 web application

The current user interface is implemented using the React framework[18],
which encapsulates each component into a single JavaScript function that
is called once per render cycle. Maintaining a state during cycles is done by
using React’s useState functions, which accepts a name for the state/variable,
as well as a function to change said state. This pattern is encouraged by the
creators of the React[19] and is used in all of the implemented components
inside the Web Application. React components can be used as DOM elements
in other components and can be given input hooks for inter-component com-
munication. These hooks are often stateful variables created in a useState func-
tion. For this Thesis an attempt was made to break down each component in
subcomponents, such that every sub component fulfills are sub task, stays
compact and remains readable. This strategy is inspired by the Separation
Of Concerns (SOC) design principle, which aims to prevent monolithic com-
ponents, that handle all functionality at once. Essentially, a subcomponent is
created if a given component can be logical divided into sub tasks. The design
of the protocol creator can be used to demonstrate this approach. The proto-
col creation mask, which the user sees when defining a protocol, is located
inside a protocol creator container, which contains a protocol creator. Creat-
ing a protocol can be divided into the general data (protocol name, number
of games), defining matchups, and defining config values. Each of these sub
tasks is represented in a component of their own. The matchups creation sub-
component can itself be divided into components which create individual
matchups. While not necessarily always the best approach to code design,
dividing components this way makes each function smaller and therefore in-
creases the likelihood of being more readable, which is especially important
in projects such as these, where development is distributed over different
students and course-projects.

In total, 12 new components got added and almost all other files got changed
to allow the user to upload and manage teams, inspect, and download inter-
esting matches, define protocols with arbitrary matchups and config values
as well as see and interact with the results of the protocol.

4.9 additional work

Since the goal of this Thesis was to expand the analytic capabilities of FRA-
UNIte’s CI system, some adjacent topics emerged during development. Such
as including the outlier finder implemented by Allani[3] into the CI work-
flow and making its results accessible to the user. Allanis work, as discussed
in the background chapter3.3, was written in python and finds anomalous
match JSON files in a pool of 1000 matches, utilizing Pandas and Scikit-Learn.
To include Allanis outlier finder into the CI workflow, required some parts of
his project to be altered. Since the CI script plans to start the outlier finding
process 30 minutes after all matches have been concluded, a way to call Al-

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.9 additional work 30

lanis work on demand was needed. As his project was written in Python, a
language barrier also had to be overcome between the Grails Web Server and
the outlier finder. Python is widely used in scientific circles and has many
libraries for statistical analysis and machine learning - all of which might be
interesting in the future for analyzing matches. The implemented solution
was to run a small Flask Web Server on localhost on the machine the Grails
Web Server is run on. Grails can now send an HTTP post request containing
the match JSONs to the python server, which performs the outlier detection
on demand. This server can also be used in the future to enable additional
analysis, by specifying additional routes. The Flask Web Server is run in the
background, using the Linux screen program.

For this Thesis, 3 routes on the python Web Server where created:

[POST] /calculate-outlier/all # Results of both LOF and IF

[POST] /calculate-outlier/lof # Outlier from LOF

[POST] /calculate-outlier/if # Outlier from IF

Figure 26: Local Python Server Routes

An issue in the preprocessing phase was also fixed, where the removal of
highly correlated datapoints in the match JSON file could lead to the match
ID field being removed, rendering the output useless. The outlier finder previ-
ously calculated a score for each match and returned the given match JSONs
sorted by that anomaly score. As each match log file has a file size above 20

MB, it’s not feasible to store a large quantity every night. To manage this, the
outlier finder only returns the top 5 most anomalous matches per outlier algo-
rithm (LOF, IF). A less sophisticated outlier finder had also been previously
implemented on the Grails Web Server, which finds the match with the most
goals received and the match where FRA-UNIted had the lowest ball posses-
sion, the highest number of timestamps where the ball was on FRA-UNIted’s
side and the most enemy shots, all at the same time. The results of both out-
lier finders are combined for a list of interesting matches. Interesting matches
are linked to the protocol they were played under and are deleted after 5 days.
This will result in a maximum storage load of 1.2 GB at any given time if 5

nights in a row 12 different interesting matches are found (5 IF matches + 5

LOF matches + most goals received match + most dominant match).

The user can find and download the list of uploaded outlier for each protocol
under the Interesting Matches tab.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.9 additional work 31

Figure 27: Interesting Matchups - Menu

Figure 28: Interesting Matchups - Tables

Work has also been done to correct parsing issues in the log file analyzer. In
some cases, missing data would halt or crash the analysis, due to deprecated
function arguments or infinite loops. Since the CI scripts where overhauled
for this Thesis, the main runHLM.sh script got refactored by removing unnec-
essary path operations and unused or commented-out code, optimizing path
and file declarations and allowing to start the script with a different target
server for debugging at a local machine (./runHLM <serverURL>). Default
behavior remains the same.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.10 ci workflow 32

4.10 ci workflow

Accounting for all the changes mentioned in the previous sections, a new
workflow chart can be created, in a similar way to the current workflow,
shown in figure 2. This workflow does not include the user interaction nec-
cessary to create the protocol and to provide the required team binaries.

runMatchlist

getTeamsInCurrentProtocol

getNewestBuild

getLatestCommitID

getConfigValues

RobocupUser GrailsServerJenkins PythonServer

getCurrentProtocolID

getHLMConfigForCurrentProtocol

start
Parallel [20 Computer]

HLM

Rcsserver

PythonAnalyzeranalyze log files

upload match JSON

getOutlier findOutlier

matchIDslogFileNames

uploadZippedLogFiles

Foreach team

getTeamBinary
Is FRA-UNIted-

NEWEST?

no

yes

cronjob

Figure 29: New CI Workflow

[June 16, 2022 at 21:52 – classicthesis version 4.2]

4.11 database model 33

4.11 database model

The full database model of the new system can be found below:

Figure 30: New Database Model

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5
R E S U LT S

5.1 introduction

Due to an unresolved error in the nightly execution of matches, the 20 comput-
ers were unavailable to perform experiments on. In an attempt to compensate
for this situation, 12 Docker container on 2 private computers were used to
run protocol experiments. Though this approach worked to some extent, the
sample size per run was less than half of the expected amount. As established
in this Thesis, large quantities of matches are required, to confidently make
statements on the observations. Since this could not be established, the results
should be interpreted with a pinch of salt. None the less, this chapter demon-
strates how the new CI system can be used to produce differently configured
FRA-UNIted teams, as well as a head-to-head comparison of the results of
the current CI system against a multi matchup result in the new system.

5.2 measured datapoints

To evaluate the results of the different experiments, various datapoints are
used, including:

• Win rate

• Goal ratio

• Passes

• Possession

• Tackles

In a competition setting, the win rate trumps all other datapoints. However,
judging the quality of a team based on win rate alone might overlook crucial
characteristics a team possesses. For example, losing most matches by a close
decision while performing intelligent strategies. The average goal ratio will
be used to determine if there exists a general strength imbalance. Passes and
possession will be used to measure how FRA-UNIted reacts to changes in
configuration. This will be discussed in more detail in the config value signif-
icance section 5.5. In the current system, a clear trend was observed, where
CYRUS would score significantly more goals against FRA-UNIted around the
half time point, due to differences in stamina management. To observe this
datapoint across different matchups, the goal timestamp histogram will be
used.

34

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.3 control experiment 35

5.3 control experiment

5.3.1 Setup

This experiment mimics the current CI system, where the newest FRA-UNIted
build is matched against CYRUS2019. These matches are used later to see if a
difference in team performance can be measured in the new CI system with
multiple matchups. As this matchup is well tested, we will not include any
assumptions here since they would be heavily influenced by familiarity bias.
We assume that the results of these matches are the baseline, against the new
CI system is compared against. As for all other experiments, 200 matches
have been played between FRA-UNIted and CYRUS2019.

CYRUS2019 has proven to be a formidable opponent over the last few years,
as indicated by its placement in the top brackets of the simulation league. In
the current CI system, CYRUS2019 won consistently over half of the matches.
The matches played for this Thesis however were more often won by FRA-
UNIted. Besides the continuous improvement of FRA-UNIted and the small
sample size, another factor might be the cause of the improvement. As will be
described in the following sections in the context of the multiple matchups ex-
periment, the new CI system uses the newest version of the rcsserver, which
in its latest release removed the ability to perform a dash with negative ve-
locity. Since the version of FRA-UNIted used for these matches has already
received patches to compensate for this change, the 2019 version of CYRUS
might be influenced in a negative way by this change.

FRA-UNIted won 44.26% of the 200 matches played, with a tie-rate of 20.90%.
As will be true for the newer version of CYRUS, used in later experiments,
the amount of aggressive maneuvers is clearly reflected in the match statis-
tics. With an average of 27.07 tackles and 9.35 fouls per game, compared to
FRA-UNIted’s 22.30 tackles and 1.69 fouls. This lends FRA-UNIted around 8

freekicks per game on average. In the following graphs, FRA-UNIted will be
colored orange.

Figure 31: Win rate VS CYRUS2019 Figure 32: Fouls VS CYRUS2019

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.4 comparing multiple matchups 36

Figure 33: Team Behavior vs
CYRUS2019

A spike in received goals can also be observed when approaching the halfway
mark. This is most likely due to the difference in stamina management, as
discussed before, where FRA-UNIted players spend most of their stamina
before reaching the halfway break, rendering them too slow to properly guard
against fast offenses.

Figure 34: Goal Timestamp Histogram vs CYRUS2019

5.3.2 Results

5.4 comparing multiple matchups

One of the main changes to the CI system is the introduction of arbitrary
matchups and the potential benefit of diversifying the opponent teams to get
a broader view on FRA-UNIted’s performance. In this section, the new sys-
tem will be used to play 200 matches against the top 5 of the 2021 World Cup.
The overall statistics will be discussed, as well as how the aggregated view
of all matchups combined, compares to individual matchups. The goal is to
highlight certain assumption regarding FRA-UNIted’s behavior which could
be made when only viewing individual matchups, and then compare them

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.4 comparing multiple matchups 37

to a broader view, using the performances across all matchups. Further, po-
tential drawbacks and pitfalls of using multiple matchups will be discussed.

5.4.1 Setup

The top 5 teams in the World Cup tournament in 2021 where:

1. CYRUS

2. HELIOS

3. YuShan

4. HfutEngine

5. Alice

Due to a technical issue, Helios is not currently available in the new CI system.
For the matches, the default configuration of FRA-UNIted will be used. For
the top 4, the binaries from Day0 of the the World Cup will be used, which
were taken from the RoboCup archive [9].

5.4.2 Expectation

When comparing the results of FRA-UNIted versus the 2021 top 4, it is ex-
pected that the average win rate will exceed the measurements from the cur-
rent CI system. This is in part expected due to a change in the rcsserver
where dashes with negative velocity were disabled, which was a widely used
strategy in the movement system of many teams. This will degrade the per-
formance of some teams. As the newest FRA-UNIted has already made steps
to fix this issue, it has an advantage over the teams from 2021. Since this a
real use case, as team binaries are mainly accessible after a RoboCup event
such as the World Cup, and these experiments aim to utilize the new CI sys-
tem, this situation is tolerated. The comparison should still be valid, as this
change impacts every team. However, some teams might rely on the negative
dashes more than others, which could inflate FRA-UNIted’s win rate. The
circumstances will be considered when analyzing the results. Additionally,
as 250 matches are played, only 50 matches per matchup are used for this
evaluation. The new CI system, running on the 20 test computers, would
produce 200 matches per matchup with the same configuration, significantly
increasing the validity of the produces results. The main goal is to compare
the relative differences between CYRUS2019, which was the previous bench-
mark team, used by the current CI system and the top 4 of the 2021 World
Cup, used by the new CI system.

5.4.3 Results

The new system allows for the selection of one or more matchups, using
the new Protocol Results page. The data used in this experiment was ob-
tained using this Web Interface. Under the new system, a clear difference in
performance is measured when comparing different matchups, even when
accounting for fluctuations due to randomness. Of the 200 matches played

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.4 comparing multiple matchups 38

against 4 different opponents, FRA-UNIted won 44.44% of matches, while
17.17% of the matches ended in a tie. Which is very similar to the results
against CYRUS2019 in the current CI system. While certainly needing further
tests, this supports the effectiveness of previous benchmark, as in terms of
win rate, a reasonably correct assesment could be made. On average FRA-
UNIted scored 1.85 goals per match, compared to 1.99 goals of the oppo-
nents. As FRA-UNIted won around 6% more games than its opponents, the
difference in average goals is most likely due to a great imbalance in goals in
some matchups, where unusually many goals were received in comparatively
small number of matches. Evidence for this assumption can be found in the
matchup against HfutEngine, where 63.26% of the 50 matches played where
losses, with 18.37% ties. Over the course of these matches, FRA-UNIted re-
ceived almost double the amount of goals per match (3.02) on average, when
compared to the 50 matches against YuShan (on average 1.59 goals per match).
As mentioned in the introduction, such high deviations might be the result
of underfitting, due to the low sample size. China’s HfutEngine2021 domi-
nated FRA-UNIted with, it seems, clever positioning and movement, without
relying on too aggressive maneuvers, which would increase the possibility of
receiving a yellow card. FRA-UNIted received unusually many offside calls
in this matchups, which could be attributed to the positioning and coordi-
nation of HfutEngine2021. Since these values are based on only 50 matches,
the results should be viewed with caution. In a relative comparison however,
these datapoints stand out, as FRA-UNIted does not receive nearly as much
offsides against YuShan2021.

Figure 35: Offsides VS HfutEngine Figure 36: Offsides VS CYRUS

Figure 37: Offsides VS Alice Figure 38: Offsides VS YuShan

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.4 comparing multiple matchups 39

As shown in the control experiment 5.3, team CYRUS has a noticeably more
aggressive play style, as indicated by the amount of tackles and that it receives
a yellow card on average every match. This characteristics also is visible with
the relatively low sample size of 50 matches against CYRUS2021. Comparing
FRA-UNIted’s team behavior chart to CYRUS and the top 5, shows a less
pronounced overall performance, while varying significantly from individual
matchup to matchup. FRA-UNIted ist colored orange in the following charts.

Figure 39: Team Behavior vs All

Figure 40: Team Behavior vs CYRUS Figure 41: Team Behavior vs YuShan

Figure 42: Team Behavior vs Alice
Figure 43: Team Behavior vs

HfutEngine

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.5 testing config value significance 40

5.5 testing config value significance

To demonstrate how the new configuration capabilities can be utilized, this
experiment is done by changing the foresee_opponents_max_age parameter of
the player agent config and comparing the resulting matches. The parameter
is an integer used by the agents to predict how far the linear trajectory of
an opponent is predicted into the future, based on the observed movement.
This experiment will test values ranging from 0 to 5, where 0 results in no
prediction by the agent. The assumption for this experiment is, that predict-
ing the position too far into the future will result in the agent misjudging its
own movements when intercepting an opponent player. Predicting nothing
or very little might result in a similar outcome, where this time the opponent
is followed too directly - thereby the agent is getting outplayed by sudden
velocity changes. If this assumption is correct, there should be a measurable
difference in performance between these tested values due to better or worse
trajectory prediction and agent positioning. This should also have at least a
small impact on possession and the goal ratio, since intercepting opponents
more often increases the probability of a change in ball possession, while also
pressuring the opponent to pass the ball to avoid the agent. However, sig-
nificant improvements in goal ratio would need further testing with a larger
sample size. A pass is detected if a kick results in an agent of the same team,
to be in the possession of the ball next. If the same agent that performed the
kick has gained the possession of the ball again, then the kick is not consid-
ered a pass. Ultimately, the experiment seeks to find out if a certain value
between 0 and 5 can outperform the default setting of 3.

5.5.1 Setup

For each tested config value, 200 matches against China’s YuShan2021 team
where played. YuShan has placed third in 2021[13], and fourth in 2019[23],
making it a top contender in the recent years. While a sample size of 200

matches can still be vulnerable to underfitting, the result should still be rea-
sonably hardened against drastic outlier. A conscious effort has been applied
to compensate for expectation bias in cases where a large deviation from the
baseline is measured. While a possibility exists, that such measurements rep-
resent the true impact of the applied changes, results of this kind are not ad-
vertised as hard evidence by this Thesis. Due to the sample size, such results
should rather be interpreted as anecdotal evidence. Furter testing is needed.

5.5.2 Control Experiment

foresee_opponents_max_age, by default, is set to the value 3, so we evaluate
this value first and will reference the here presented results as default results
in later comparisons. The following values will be compared against these
results to get a relative estimate on the impact of the applied changes.

The default results for FRA-UNIted versus YuShan2021 yields a win rate of
48.5% for FRA-UNIted with 18.5% ties. On average, FRA-UNIted scored 1-3
goal per match while receiving 1-2. The highest recorded number of goals,
however, is the same for both teams at 7. FRA-UNIted performs significantly

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.5 testing config value significance 41

more tackles than YuShan2021 with a median of 37 and a maximum of 64,
whereas YuShan2021 tackles on average around 19 times per match, with
a recorded maximum of 35. Perhaps fittingly, YuShan2021 is more active in
terms of passes, with a median of 131 and a maximum of 177. FRA-UNIted
averages 65 passes a match, with a maximum of 109.

Figure 44: Age 3 - Tackles Figure 45: Age 3 - Passes

Running 200 matches per configuration yields the following table:

5.5.3 Results

Avg Goals Avg

Wins Ties Scored Received Tackles Possession

Age: 0 45.00% 24.00% 1.73 1.54 38.02 34.35%

Age: 1 37.00% 23.00% 1.92 1.99 37.46 36.57%

Age: 2 47.50% 19.50% 1.88 1.69 39.81 35.05%

Age: 3 48.50% 18.50% 1.95 1.63 37.33 36.32%

Age: 4 38.00% 19.50% 1.64 1.78 38.98 33.95%

Age: 5 43.00% 20.50% 1.86 1.77 39.98 34.98%

Table 3: Results for foresee_opponents_max_age for value 0 to 5

These results suggest, that only changing foresee_opponents_max_age has only
a small impact on the measurable statistics. Due to the sample size of 200

matches, the fluctuations in win rate might be in part due to the inherit ran-
domness of each match. A pattern is observable however, where the number
of stalemates increases for low age values, with disabling opponent predic-
tion (age = 0) would result in 7.5% more ties that using the default config.
An explanation of this difference could be, that the lack of predictions causes
FRA-UNIted to choose a more direct path in defensive play when guarding or
pressuring an opponent. This change in behavior could throw off YuShan2021
such that its offensive strategy is less effective. If this where true, we would
expect a lower number of goals received on average, which with a differ-

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.5 testing config value significance 42

ence of close to 0.1 goals on average cannot be backed by evidence. Alterna-
tively, not predicting the opponent’s position in an offensive scenario could
cause a FRA-UNIted player to underestimate an interception movement by
YuShan2021. We would expect that a larger number of offensive attempts by
FRA-UNIted would be prevented by YuShan2021, which could be measurable
using the shots_on_target datapoint as well as less goals being scored on av-
erage. The shots_on_target average effectively doesn’t decrease between age =
0 and other age settings. However, the maximum number of shots_on_target
decreased by 18 compared to the default config. As the maximum values only
indicate the upper boundary, they can’t can be used for making a statement
on a general pattern. Indeed, the matches played with age = 0 have the lowest
average scored goals with a difference of 0.22 goals less than the best score
by age = 3. This difference can be viewed as negligible, so further testing,
using a larger sample size is required to be able to come to a more definitive
conclusion.

Comparing the goal-timestamp distribution of age = 0 and age = 3 also shows
that under the default config, a significant amount of the received goals are
happening close to halftime. A pattern which was also observed in the cur-
rent CI system against CYRUS2019. This seems to change however when dis-
abling the opponent path prediction to be more evenly distributed. Other
values, such as age = 4 also contain the half time pattern, as well as a more
pronounced spike near the end of the matches.

Figure 46: Goal Timestamp Histogram - Age 0

[June 16, 2022 at 21:52 – classicthesis version 4.2]

5.5 testing config value significance 43

Figure 47: Goal Timestamp Histogram - Age 3

Figure 48: Goal Timestamp Histogram - Age 4

Generally, the here produced results indicate that, decreasing foresee_opponents_max_age
has no beneficial consequences, which could be measured using the CI sys-
tem. There might exist a meaningful difference in the average running dis-
tance of FRA-UNIted’s players or the relative distance to opponent players
when guarding, however such datapoints are not yet obtained by the log an-
alyzer scripts.

This experiment showed, that changing team configurations, using the new CI
system, can result in measurable differences in the match statistics produced.
As the evidence for wide ranging changes in performance for different fore-
see_opponents_max_age values is inconclusive, a test with more match volume
is needed. However, this experiment showed, how to use the new CI system
and can be seen as a proof of concept for future experiments.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

6
F U T U R E W O R K

6.1 forking hlm

The new CI system can be further improved upon in future projects by forking
the HLM project to have a clean way of extracting the user-given team names
after running a match. To achieve this, the statistics function the match.rb script
must be extended by adding the team’s name as a command line argument to
the system statistics_bin function call. This way, no parsing would be necessary,
as the user-given name is known at this point.

6.2 login and security

The Web Application does not contain any security features, which was not a
problem before, as it was a unidirectional system. But now, since a user can
upload and download executable files, a login system should be implemented
to shield the system from unauthorized access.

6.3 config values for individual teams

Configurations are set on a protocol basis. A valid use case however would
be testing multiple configurations in a single protocol to avoid having to wait
multiple days. The existing config component could be made into a dialog
component and added to a team info object, instead of the protocol object.

6.4 log file analyzer

The log file analyzer often struggles with parsing log files, which results in
the match not being sent to the Grails Web Server. Some of these issues have
been fixed in this Thesis but more testing is needed to find all parsing errors.

6.5 containerization of the python analysis server

In the new system, the Flask Web Server, which is used to find outlier on
demand is run in the background using the screen command. A more trans-
parent solution would be to use a program like Docker and start the server in
a container. This would simplify testing, deployment, and monitoring.

6.6 log file player

In a previous Thesis, a web-based log file player was implemented, using
React and Electron. Including this project into the existing Web Application
would enable the user to directly view the interesting matches on demand,
without the need to start the rcsmonitor locally. As the log file player requires
many libraries the scope for such an inclusion is uncertain.

44

[June 16, 2022 at 21:52 – classicthesis version 4.2]

7
C O N C L U S I O N

The RoboCup 2D simulation league continues to evolve, with a steady in-
crease in the capabilities on how the teams play soccer. As every match of
2D soccer is tainted to various degrees by randomness, a need to play a large
number of matches arise, to limit the impact of chance on the overall results.
For this reason, a CI system has been implemented. This Thesis discussed
various drawbacks of the current CI system, which is used by the developers
of Frankfurt University Of Applied Sciences’ RoboCup team - FRA-UNITed,
with the goal to assess its performance. The main points discussed where:

• Risk of overfitting, by only playing against the same team

• No interaction and influence on the CI system besides new commits

• Unused potential for configuration testing

In this work, a new CI system was demonstrated, which allows the managing
and usage of arbitrary team binaries, along with the ability to freely specify
config values for arbitrary config files. These new capabilities are organized
under a protocol structure, which defines a nightly run of matches. To facili-
tate this functionality, wide reaching changes to the Grails Web Server, React
Web Application and CI shell scripts had to be made. By using a top-down
approach to software design, with the emphasis on applying the divide and
conquer principle when possible, a new Web Interface was constructed, to
provide the user of the CI system with more control over the nightly training
process.

Moreover, a measurable difference in performance could be shown, which
has the potential of being a more accurate assessment of FRA-UNIted’s team
quality. Additionally, the new configuration capabilities were put to the test,
by using them to analyze the impact of changing a trajectory prediction pa-
rameter and comparing the resulting differences in outcomes.

This Thesis also proposed future topics, which could further improve the CI
system, such as adding security features to the Web Server and allowing con-
figuration of arbitrary teams on a matchup basis, instead of on a protocol
basis. The CI system remains to be a powerful tool, to gauge FRA-UNIted’s
performance over the course of its development and has been extended to
limit or eliminate the discussed drawbacks. Further research into the CI sys-
tem and additional capabilities of an automated training process must be
done in order to further benefit the development of FRA-UNIted.

45

[June 16, 2022 at 21:52 – classicthesis version 4.2]

Part II

A P P E N D I X

[June 16, 2022 at 21:52 – classicthesis version 4.2]

B I B L I O G R A P H Y

[1] Hidehisa Akiyama. Rcsserver. https : / / github . com / rcsoccersim /

rcssserver. 2022.

[2] Hidehisa Akiyama, Tomoharu Nakashima, Takuya Fukushima, Jiarun
Zhong, Yudai Suzuki, and An Ohori. “Helios2018: Robocup 2018 soccer
simulation 2D league champion.” In: Robot World Cup. Springer. 2018,
pp. 450–461.

[3] Mohamed Amine Allani. “Analyse und Darstellung von RoboCup Spie-
len mit Maschinellem Lernen.” unpublished master thesis. 2020.

[4] Grzegorz Ficht and Sven Behnke. “Bipedal humanoid hardware design:
A technology review.” In: Current Robotics Reports 2.2 (2021), pp. 201–
210.

[5] Grails Foundation. A powerful Groovy-based web application framework for
the JVM built on top of Spring Boot. https://grails.org/. 2022.

[6] Fussballdaten.de. Abschlusstabellen der Bundesliga. https://www.fussballdaten.
de/bundesliga/2022/tabelle/. 2022.

[7] Thomas Gabel, Egbert Falkenberg, and Eicke Godehardt. “Progress in
RoboCup revisited: the state of soccer simulation 2D.” In: Robot World
Cup. Springer. 2016, pp. 144–156.

[8] Thomas Gabel and Constantin Roser. “FRA-UNIted–team description
2016.” In: RoboCup 2016 Symposium and Competitions: Team Description
Papers. Leipzig, Germany. 2016, pp. 10–18.

[9] Stefan Glaser. RoboCup.info Archive. http://archive.robocup.info/
Soccer/Simulation/2D/binaries/RoboCup/2021/Day0/. 2022.

[10] Andreas Hechenblaickner. Hech League Manager. 2004-2010.

[11] Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, and Ei-
ichi Osawa. “Robocup: The robot world cup initiative.” In: Proceedings of
the first international conference on Autonomous agents. 1997, pp. 340–347.

[12] Hiroaki Kitano, Minoru Asada, Itsuki Noda, and Hitoshi Matsubara.
“RoboCup: Robot world cup.” In: IEEE Robotics & Automation Magazine
5.3 (1998), pp. 30–36.

[13] RoboCup Soccer Simulation League. Final rankings. https : / / ssim .

robocup.org/soccer-simulation-2d/2d-competition/2021-2/final-

rankings. 2021.

[14] Avraham Leff and James T Rayfield. “Web-application development us-
ing the model/view/controller design pattern.” In: Proceedings fifth ieee
international enterprise distributed object computing conference. IEEE. 2001,
pp. 118–127.

[15] Robert C Martin, James Newkirk, and Robert S Koss. Agile software de-
velopment: principles, patterns, and practices. Vol. 2. Prentice Hall Upper
Saddle River, NJ, 2003.

47

[June 16, 2022 at 21:52 – classicthesis version 4.2]

https://github.com/rcsoccersim/rcssserver
https://github.com/rcsoccersim/rcssserver
https://grails.org/
https://www.fussballdaten.de/bundesliga/2022/tabelle/
https://www.fussballdaten.de/bundesliga/2022/tabelle/
http://archive.robocup.info/Soccer/Simulation/2D/binaries/RoboCup/2021/Day0/
http://archive.robocup.info/Soccer/Simulation/2D/binaries/RoboCup/2021/Day0/
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/2021-2/final-rankings
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/2021-2/final-rankings
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/2021-2/final-rankings

bibliography 48

[16] Mauricio Matamoros, Viktor Seib, Raphael Memmesheimer, and Diet-
rich Paulus. “RoboCup@ Home: Summarizing achievements in over
eleven years of competition.” In: 2018 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC). IEEE. 2018, pp. 186–
191.

[17] Plotly.com. Plotly JavaScript Open Source Graphing Library. https : / /

plotly.com/javascript/. 2022.

[18] Reactjs.org. React - A JavaScript library for building user interfaces. https:
//reactjs.org. 2022.

[19] Reactjs.org. Using Multiple State Variables. https://reactjs.org/docs/
hooks-state.html. 2022.

[20] Masaki Yamaguchi, Ryota Kuga, Hiroki Omori, Takuya Fukushima, To-
moharu Nakashima, and Hidehisa Akiyama. “HELIOS2021: Team De-
scription Paper.” In: RoboCup 2021 Symposium and Competitions, World-
wide. 2021.

[21] bundesliga.com. Spielplan 2021-2022. https://www.bundesliga.com/
de/bundesliga/spieltag. 2022.

[22] robocup2017.org. RoboCup2017 Nagoya Japan Results. https://www.robocup2017.
org/results_soccer_simulation2d.html. 2017.

[23] ssim.robocup.org. Final Ranking of Soccer Simulation 2D League in 2019.
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/

2019-2/results/. 2019.

[24] ssim.robocup.org. Final Rankings of Soccer Simulation 2D League 2021.
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/

2021-2/final-rankings/. 2021.

[June 16, 2022 at 21:52 – classicthesis version 4.2]

https://plotly.com/javascript/
https://plotly.com/javascript/
https://reactjs.org
https://reactjs.org
https://reactjs.org/docs/hooks-state.html
https://reactjs.org/docs/hooks-state.html
https://www.bundesliga.com/de/bundesliga/spieltag
https://www.bundesliga.com/de/bundesliga/spieltag
https://www.robocup2017.org/results_soccer_simulation2d.html
https://www.robocup2017.org/results_soccer_simulation2d.html
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/2019-2/results/
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/2019-2/results/
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/2021-2/final-rankings/
https://ssim.robocup.org/soccer-simulation-2d/2d-competition/2021-2/final-rankings/

	Declaration
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Acronyms

	Thesis
	1 Introduction and Motivation
	1.1 Introduction
	1.2 Motivation

	2 Related Work
	2.1 Helios

	3 Background
	3.1 Introduction
	3.2 Current Architecture
	3.2.1 Introduction
	3.2.2 Jenkins Server
	3.2.3 Grails Webserver
	3.2.4 React Web Application
	3.2.5 Data Model
	3.2.6 Database
	3.2.7 Test Computers
	3.2.8 RoboCup Tournament Software

	3.3 Adjecent Work
	3.4 Limitations

	4 Implementation
	4.1 Introduction
	4.2 General Concept
	4.3 Project Setup
	4.4 Arbitrary Matchups
	4.5 Uploading And Managing Arbitrary Team Binaries
	4.6 Arbitrary Config Parameter For FRA-UNIted
	4.7 Matches And Match Statistics
	4.8 Web Application
	4.9 Additional Work
	4.10 CI Workflow
	4.11 Database Model

	5 Results
	5.1 Introduction
	5.2 Measured Datapoints
	5.3 Control Experiment
	5.3.1 Setup
	5.3.2 Results

	5.4 Comparing Multiple Matchups
	5.4.1 Setup
	5.4.2 Expectation
	5.4.3 Results

	5.5 Testing Config Value Significance
	5.5.1 Setup
	5.5.2 Control Experiment
	5.5.3 Results

	6 Future Work
	6.1 Forking HLM
	6.2 Login and Security
	6.3 Config values for individual teams
	6.4 Log file analyzer
	6.5 Containerization of the python analysis server
	6.6 Log file player

	7 Conclusion

	Appendix
	Bibliography

