
Brainstormers 2D

Public Source Code Release 2005

M. Riedmiller, T. Gabel, and H. Schulz

Neuroinformatics Group
Institute of Mathematics and Computer Science

Institute of Cognitive Science
Universität Osnabrück, 49069 Osnabrück, Germany

{martin.riedmiller|thomas.gabel|hanschul}@uos.de

Abstract. The Brainstormers have been participating in RoboCup’s
soccer simulation tournaments since 1998. Ever since a number of suc-
cesses could be achieved, including multiple World Vice Champion titles
and the World Champion title at RoboCup 2005 in Osaka. By now, the
source code of our team will be made publicly available. This way, we
hope to make a contribution to the entire soccer simulation community,
in particular to new teams for which, as is known, it is difficult to over-
come basic problems, such as developing a reliable world model or basic
skills. The document at hand aims at giving a coarse overview of our
source code release directly relating to the structure of the code.

1 Overview

While the Brainstormers’s implementation has been under continuous develop-
ment and witnessed various changes over the years, the underlying and encourag-
ing research goal has always been to exploit AI and machine learning techniques
wherever possible. A more detailed description of our research efforts, particu-
larly the employment of Reinforcement Learning (RL) methods, is beyond the
scope of this paper. Instead, we refer to the team description paper provided for
this year’s RoboCup tournament in Osaka [1] as well as the team description
papers of previous years [2–7]. There are also a number of articles focusing on
the employment of machine learning and reinforcement learning techniques in
the context of the Brainstormers and simulated robotic soccer [8–12].

The present source code release is made publicly available under the terms
of the GNU General Public License (GPL)1 and comes without any warranty.
Its code has been developed in C++ under Linux.

1.1 Contents of the Source Code Release

The agent can be divided into two main modules, the world model module
and the decision making module. Input to the decision making module is the

1 http://www.gnu.org/copyleft/gpl.html

approximate, complete world state. The soccer environment is modelled as a
Markovian Decision Process (MDP), where the respective action is taken with
respect to the current state the agent finds itself in. Decision making is organized
in complex and less complex behaviors, the structure of which will be described
more thorougly below. For a big part of the agent’s behavior there are also
learned behaviors, which are part of this source code release, too.

The release contains the following components:

– the entire world model module, including

• self-localization via particle filters,

• world state memory and statistics,

• communication with the soccer server (sensoring),

• soccer server parameter handling

– the entire set of agent skills:

• three variants of dribbling,

• ball facing and searching,

• going to specified positions forwards as well as backwards,

• four variants of ball interception,

• three variants of ball kicking,

• ball holding,

• goal scoring,

• passing and self passing,

• and several others

– numerous learned behaviours using reinforcement learning (value function
representation has been done with neural networks typically, that are in-
cluded as well)

– a complete behavior controller for neck control

– a complete behavior controller for view control

– a complete behavior controller for attention-to control

– useful tools, like

• classes for handling geometric data structures,

• a library (n++) for working with neural networks,

• classes for communication via UDP,

• tools for reading/writing configuration files etc.

– appropriate configuration files

– the Brainstormers online coach, called SputCoach, including its source code
(version of February 2005)

Thus, this Brainstormers agent source code release is complete with respect to
the current state of development of our team with one exception: On the strategic
decision level the corresponding behavior has been replaced by a simple demo
behavior (see below).

1.2 Utilization of Reinforcement Learning

As indicated at the beginning of this document, a main research goal of our efforts
in the development of the Brainstormers is to employ reinforcement learning
methods wherever applicable. In the current public source code release you will
find a lot of our results in applying RL—some learning algorithms as well as
behaviors that exploit the results of learning (e.g. those behaving greedily with
respect to a value function represented by a neural network). The following
learned modules are part of this release:

– learned skills, such as ball kicking (NeuroKick and NeuroKick05), ball in-
tercepting (NeuroIntercept), going to a position (NeuroGo2Pos)

– learned medium-level capabilities, like passing (NeuroWball, LearnWball)
– learned team-level capabilities, such as cooperatively scoring a goal (Score04

or positioning (NeuroPositioning)
– function approximators to represent state and state-action value functions

(see directory data/)

1.3 Outlining the Brainstormers Agent

Looking at the Brainstormers agent from a top-level view, it can be subdivided
into four substantial parts or controllers, respectively, which correspond to the
four “types” of commands a player can send to the Soccer Server concurrently:
The neck controller handles the player’s head and decides where to look next,
the view controller handles the player’s eyes and decides on next view angle and
width requested, the attention-to controller handles the player’s ears and decides
to which teammate should be listened next, and, finally, the main/base behavior
controller handles the player’s main actions. All of those are instantiated in the
main file client.c.

Without any doubt, decision making with respect to body movements (i.e. send-
ing kick, turn, or dash commands to the sever) as done by the behavior controller
seems to be of utmost importance for the player’s overall performance. The
decision making process the Brainstormers agent is based upon is inspired by
behavior-based robot architectures. A set of more or less complex behaviors real-
ize the agents decision making as sketched in Figure 1.3. To a certain degree this
architecture can be characterized as hierarchical, differing from more complex
behaviors, such as “no ball behavior”, to very basic, skill-like ones, e.g. “pass
behavior”. Nevertheless, there is no strict hierarchical sub-divisioning. Conse-
quently, it is also possible for a low-level behavior to call a more abstract one.
For instance, the behavior responsible for intercepting the ball may, under cer-
tain circumstances, decide that it is better to not intercept the ball, but to focus
on more defensive tasks and, in so doing, call the “defensive behavior” delegating
responsibility for action choice to it.

2 Source Code Review

The source code’s documentation and commenting is of varying comprehensive-
ness. You will find numerous classes being documented very thoroughly, while

aggressive behaviordefensive behavior

with ball behavior

goalshot behavior
selfpass behavior go to ball behaviorpass behavior

behavior

dribble
no ball behavior

freekick behavior

high level

low level

Fig. 1. The Behavior Architecture

others feature barely a line of comment. However, for the scope of this public
source code release we could not accomplish/finish the comprehensive documen-
tation of the entire package. To give the interested reader a quick start into the
lots of source code, we provide an overview here.

2.1 Directory Structure

On the top level you will find 5 directories:

– bs2k/ contains the complete sources (including makefile) of the Brainstorm-
ers agent

– doc/ contains this short documentation of the source code release
– lib/ contains useful tools to be used by the agent and coach
– scripts/ contains a script to start an entire team
– sputcoach/ contains the sources (including makefile) of the Brainstormers’

online coach

Most of the details you will find in the following refer to the bs2k/ directory
since it contains the main load of the Brainstormers agent.

2.2 bs2k/ — The Brainstormers Agent

In this directory you may find a makefile which, by invoking make, generates an
executable binary that is stored as artagent/BS2kAgent. Furthermore, there
are six relevant sub-directories.

– artagent/ contains the core of the agent. Here, you will find the world
model, sensor passing/buffering classes (communication with Soccer Server),
parameter handling, as well as the agent’s main file client.c.

– basics/ contains basics. Here, you will find interfaces that facilitate the re-
trieval of information from the world model (e.g. classes WSinfo or WSMemory),
classes that supoort logging, basic handling of formations, global definitions,
simple (analytical) intercept routines, and the definition of commands (to
be sent to the soccer server). Moreover, class Tools provides a model of the
Soccer Server environment.

– behaviors/ contains the largest part of this public code release. In behaviors/,
higher level behaviors are to be found. Those include among others, behaviors
for standard situations, for the goalie (which is seperated from the player’s
behaviors), no ball and with ball behaviors (demo only), passing/scoring be-
haviors as well as the main behavior, which is for historical reasons called
Bs03. Of crucial importance are the two sub-directories you will find here:
• skills/ contains the entire set of basic behaviors, usually termed skills,

the Brainstormers employ.
• view/ contains classes with functionality related to the player’s neck,

attention-to and view controlling.
– conf/ contains configuration files that are read by the agent at start-up.
– The data/ directory contains function approximators learned in a reinforce-

ment learning context. Mainly, these are neural networks (multilayer per-
ceptron feed-forward networks) that are emplyoed by some of the agent’s
behaviors.

– policy/ contains helpful tools that may be mainly employed for taking
strategic decisions (e.g. referring to passing and positioning).

2.3 Decision Making

Each implemented behavior—no matter if used for the attention-to, neck, view,
or main functionality of the agent—must derive from its corresponding base
class (AttentionToBehavior, NeckBehavior, ViewBehavior, BaseBehavior).
As a consequence, each behavior is required to implement the method bool

get cmd(Cmd &cmd), which takes a Cmd object as parameter. The implementa-
tion of get cmd for each behavior is requested to fill the command parameter
correspondingly, to return true in case a suitable command could be found,
and false otherwise. As any behavior provides this get cmd-based interface it
is possible for each behavior to utilize any other available behavior to determine
an appropriate command by invoking those behavior’s get cmd method (for ex-
ample, a dribble behavior may employ the functionality provided by a go2pos
or kick behavior).

The main behavior can be specified in agent.conf (e.g. Bs03), its get cmd

will be called every cycle (see main loop in client.c). Having a look at the
corresponding file bs03 bmc.c, one quickly finds out that—depending on the
current play mode—other behaviors are called. Most importantly, for play mode
“play on” it is further distinguished whether the considered player is in ball
possession or not. Depending on that, the responsibility for decision making is
played on the respective strategic “no ball” or “with ball” behavior. We have
provided an examplary demo no/with ball behavior (classes NoballDemo and
WballDemo) that act as follows: Each player not in ball possession moves to a
specific position as calculated by the current formation (utilizing several skill
behaviors), except for the player which is nearest to the ball who always goes to
the ball (also by utilizing several skill behaviors). A player in ball possesion will—
with decreasing priority—try to shoot a goal, advance by means of dribbling,
play a pass to a teammate, or (if everything fails) do nothing. Though consisting

of a few hundred lines of code only, the simple logic implemented by these policies
reaches remarkable playing quality.

3 Summary

Driven by the idea to further push forward the development in the Soccer Simu-
lation (2D) environment, we have decided to make the source code of our World
Champion Team 2005, Brainstormers, publicly available. The source code is
published and may be used under the terms of the GNU General Public License
(GPL).

References

1. Riedmiller, M., Gabel, T., Knabe, J., Strasdat, H.: Brainstormers 2D — Team
Description 2005. In: RoboCup-2005: Robot Soccer World Cup IX, LNCS. Springer
(2005) To appear.

2. Riedmiller, M., Buck, S., Merke, A., Ehrmann, R., Thate, O., Dilger, S., Sinner,
A., Hofmann, A., Frommberger, L.: Karlsruhe Brainstormers - Design Principles.
In: RoboCup-1999: Robot Soccer World Cup III, LNCS. Springer (1999)

3. Riedmiller, M., Merke, A., Meier, D., Hoffmann, A., Sinner, A., Thate, O., Kill,
C., Ehrmann, R.: Karlsruhe Brainstormers - A Reinforcement Learning Way to
Robotic Soccer. In Jennings, A., Stone, P., eds.: RoboCup-2000: Robot Soccer
World Cup IV, LNCS. Springer, Melbourne, Australia (2000)

4. Merke, A., Riedmiller, M.: Karlsruhe Brainstormers – A Reinforcement Learning
Way to Robotic Soccer II. In Birk, A., Coradeschi, S., Tadokoro, S., eds.: RoboCup-
2001: Robot Soccer World Cup V, LNCS. Springer, Seattle, USA (2001) 322–327

5. Riedmiller, M., Merke, A., Hoffmann, A., Withopf, D., Nickschas, M., Zacharias,
F.: Brainstormers 2002 - Team Description. In Birk, A., Coradeschi, S., Tadokoro,
S., eds.: RoboCup-2002: Robot Soccer World Cup VI, LNCS. Springer, Fukuoka,
Japan (2002)

6. Riedmiller, M., Merke, A., Nowak, W., Nickschas, M., Withopf, D.: Brainstormers
2003 - Team Description. In: RoboCup 2003: Robot Soccer World Cup VII, LNCS,
Padua, Italy, Springer (2003)

7. Riedmiller, M., Merke, A., Withopf, D.: Brainstormers 2004 - Team Description. In:
Team Description Papers on CD-ROM for Proceedings of RoboCup 2004. Springer,
Lisbon, Portugal (2004)

8. Riedmiller, M., Merke, A.: Using Machine Learning Techniques in Complex Multi-
Agent Domains. In Stamatescu, I., Menzel, W., Richter, M., Ratsch, U., eds.:
Adaptivity and Learning. Springer (2003)

9. Gabel, T., Riedmiller, M.: CBR for State Value Function Approximation in Re-
inforcement Learning. In: Proceedings of the 6th International Conference on
Case-Based Reasoning (ICCBR 2005), Chicago, USA, Springer (2005) 206–221

10. Gabel, T., Riedmiller, M.: Learning a Partial Behavior for a Competitive Robotic
Soccer Agent. KI Zeitschrift (2006. To appear)

11. Withopf, D., Riedmiller, M.: Comparing Different Methods to Speed-up Rein-
forcement Learning in a Complex Domain. In: Proceedings of the International
Conference on Systems, Man, and Cybernetics, Big Island, USA (2003)

12. Withopf, D., Riedmiller, M.: Effective Methods for Reinforcement Learning in
Large Multi-Agent Domains. it - Information Technology Journal 47 (2005)

